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This paper presents a novel form-finding algorithm for tensegrity structures that is based on the finite
element method. The required data for the form-finding is the topology of the structure, undeformed
bar lengths, total cable length, prestress of cables and stiffness of bars. The form-finding is done by mod-
ifying the single cable lengths such that the total cable length is preserved and the potential energy of the
system is minimized. Two- and three-dimensional examples are presented that demonstrate the excel-
lent performance of the proposed algorithm.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A tensegrity is a structure that maintains its shape by using a
discontinuous set of compressive elements (bars) that are con-
nected to a continuous net of prestressed tensile elements (cables),
Pugh (1976). Hence, the word tensegrity is an abbreviation for ten-
sile integrity, Fuller (1962). Although tensegrities were first created
within the art community, Snelson (1965), they have been rapidly
applied to other disciplines such as architecture, Hanaor (1992),
and space engineering, Tibert (2003). Fig. 1 shows an example of
a tensegrity structure.

This paper is concerned with the form-finding of tensegrity
structures on the basis of the finite element method. A novel algo-
rithm is presented that can be used to find tensegrity configura-
tions for topologies that are statically indeterminate, statically
determinate or even kinematic. The paper is organized as follows:
Section 2 reviews the literature and Section 3 introduces the theo-
retical foundation of the proposed method. Section 4 presents
form-finding results and convergence plots for different two- and
three-dimensional examples. Section 5 discusses the application
of the proposed method to kinematic and statically determinate
topologies on the basis of symmetry transformation matrices.
Finally, Section 6 concludes the paper.

2. Literature review

The first methods for constructing simple and highly symmetric
tensegrities were based on convex polyhedra and published by Ful-
ler (1975), Emmerich (1988) and Snelson (1965). However, it was
ll rights reserved.
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found that the resulting shapes were not identical to the corre-
sponding polyhedra so that it became necessary to develop new
form-finding methods. A comprehensive review about the form-
finding of tensegrities can be found in Tibert and Pellegrino
(2003). Existing form-finding algorithms can be classified into
kinematical and statical methods:

Kinematical methods increase (decrease) the length of bars
(cables) until a maximum (minimum) is reached while the length
of cables (bars) is kept constant. For example, Connelly and Terrel
(1995) proposed an analytical method where the coordinates of
each node are expressed as a function of geometric parameters.
Starting from an arbitrary configuration they maximized (mini-
mized) the length of bars (cables) for given cable (bar) lengths.
Although this approach can be used for highly symmetric struc-
tures, it becomes infeasible for non-symmetric tensegrities due
to the large number of variables that are required to describe a
general configuration. Other methods that fall into this category
are, for example, Pellegrino (1986) and Belkacem (1987).

Statical methods minimize the potential energy of the tensegrity
by considering one or more constraints. For example, Kenner
(2003) used node equilibrium conditions and symmetry arguments
to find stable configurations of some simple tensegrities. Linkwitz
(1999) and Schek (1974) developed the force density method that
requires prior knowledge of the stress coefficients for all members.
Masic et al. (2005) presented a modified version of the force den-
sity method that explicitly includes shape constraints. Connelly
(1993) published a form-finding method that assigns an energy
function to a tensegrity and searches the minimum of this function.
It was shown that the latter method is closely related to the force
density method. An approach by Sultan et al. (1999) identifies a set
of generalized coordinates for a particular tensegrity framework
and uses symbolic manipulation to obtain the equilibrium matrix.
However, general results are hard to find so that only some
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Fig. 1. Tensegrity structure (Needle tower by Kenneth Snelson, courtesy
Wikipedia).
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solutions for highly symmetric tensegrities have been given, Sultan
(1999). Finally, Estrada et al. (2006) published an algorithm where
the force density for each member is iteratively calculated by using
rank constraints on the stress and rigidity matrices.

3. Theoretical framework

In the following we consider only statically indeterminate
topologies. The form-finding for topologies that are statically
determinate or kinematic is discussed in Section 5. The proposed
form-finding algorithm is outlined in Fig. 2. The required data are
the topology of the structure (i.e. the connectivity of bar and cable
elements), undeformed bar lengths, total cable length, prestress of
cables and stiffness of bars. Note that the initial cable lengths can
be chosen arbitrarily as long as they satisfy the total cable length.

The algorithm splits naturally into two stages:

� Stage 1 computes an equilibrium configuration of a structure
with elastic bars and given cable lengths. Furthermore, first
and second order information is computed at the equilibrium
configuration that relates the change of bar lengths to the
change of cable lengths.

� Stage 2 is based on the first and second order information from
Stage 1 and assumes elastic bars and prestressed cables that
Data - Topology - Length
- Undeformed bar lengths      - Stiffne

DegreeObjective

- Compute equilibrium
 configuration for given
 cable lengths
 

- Compute gradient and
 Hessian that relates
 change of cable lengths
 to change of bar lengths

Stage

Nodal d

Compute new cable
lengths that minimize
potential energy

- Cable
 

- One c

1

2

Iterate until change of
cable lengths is zero

Fig. 2. Schematic drawing of prop
have zero axial stiffness. This stage modifies the single cable
lengths by simultaneously preserving the total cable length such
that the energy of the system is minimized.

The algorithm iterates between both stages until a tensegrity is
found. Note that there are, depending on the spatial dimension,
2nn or 3nn degrees of freedom in the first stage and only nc þ 1 de-
grees of freedom in the second stage (nn is the number of nodes
and nc the number of cables). A detailed presentation of both
stages is given in the following subsections.

3.1. The first stage

Stage 1 computes an equilibrium configuration of a structure
with elastic bars and given cable lengths by using the finite ele-
ment method. The cables and bars are modeled with the geometric
nonlinear two-node bar finite element that is presented in Appen-
dix A. The initial cable lengths are preserved by defining

EcAc � EbAb ð1Þ

where EcAc is the axial stiffness of the cables and EbAb the axial
stiffness of the bars. The total energy P of the system can be written
as

ð2Þ

where f are the element forces. Note that the energy of the cables is
negligible for finite cable forces since EcAc � EbAb. Therefore, we can
conclude that the first stage computes an equilibrium configuration
that minimizes the energy of the bars for given cable lengths.

The second stage of the algorithm requires, at the previously
obtained equilibrium configuration, first and second order
information that relates the change of bar lengths to the change
of cable lengths. In particular, we need the gradient matrix G of size
nb � nc

G ¼

oLb1

oLc1 � � � oLb1

oLcnc

..

. . .
. ..

.

oLbnb

oLc1 � � � oLbnb

oLcnc

2
6664

3
7775 ð3Þ
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Table 1
Geometric, material and algorithm parameters for two-dimensional examples.

AbEb AcEc Acrc DLc
FFD DLc

max

Stage 1 1 106 AcEcec
G 10�4 –

Stage 2 1 0 1 – 0.5

3

1

4 2

Bars
Cables

1 2

Fig. 3. Topology and element numbering of two-dimensional examples.
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and the Hessian H of size nb � nc � nc

H ¼

o2Lb1

oLc1 oLc1 � � � o2Lb1

oLc1 oLcnc

..

. . .
. ..

.

o2Lb1

oLcnc oLc1 � � � o2Lb1

oLcnc oLcnc

2
6664

3
7775 � � �

o2L
bnb

oLc1 oLc1 � � � o2L
bnb

oLc1 oLcnc

..

. . .
. ..

.

o2Lbnb

oLcnc oLc1 � � � o2Lbnb

oLcnc oLcnc

2
6664

3
7775

2
6664

3
7775 ð4Þ

These matrices are computed by using a forward finite difference
(FFD) scheme and cable increments that are a multiple of DLc

FFD. A
pseudo-code of the first stage is given in Algorithm 1.

3.2. The second stage

Stage 2 modifies the single cable lengths by simultaneously pre-
serving the total cable length such that the energy of the system is
minimized. The second stage is based on the gradient G and the
Hessian H from Stage 1. Furthermore, the properties of the bars
are unchanged compared to the first stage. However, the cables
possess now a prestress rc but no axial stiffness EcAc so that the
potential energy Ptens of a tensegrity is

Ptens ¼
Xnc

i¼1

Acirci ðLci � Lci
0 Þ þ

Xnb

i¼1

Ebi Abi

Z Lbi

L
bi
0

Lbi
2
� Lbi

0

2

2Lbi
0

2 dLbi

¼
Xnc

i¼1

Acirci ðLci � Lci
0 Þ þ

Xnb

i¼1

Ebi Abi
Lbi

3
� Lbi

0

3

6Lbi
0

2 � Lbi � Lbi
0

2

0
@

1
A ð5Þ

where superscript ci refers to the ith cable and bi to the ith bar. The
force vector of the tensegrity can be written as

oPtens

oLcj
¼ Acjrcj þ

Xnb

i¼1

Ebi Abi
Lbi

2
� Lbi

0

2

2Lbi
0

2

oLbi

oLcj
ð6Þ

where the derivatives oLbi=oLcj are known from Stage 1. Note that
the forces are in the direction of the cables since the force vector
is the derivative of the potential energy with respect to the cable
lengths. Finally, the tensegrity stiffness matrix results in

o2Ptens

oLcj Lck
¼ Ktens ¼

Xnb

i¼1

Ebi Abi
Lbi

Lbi
0

2

oLbi

oLcj

oLbi

oLck|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Material stiffness

þ Lbi
2
� Lbi

0

2

2Lbi
0

2

o2Lbi

oLcj Lck|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Geometric stiffness

0
BBBB@

1
CCCCA ð7Þ

The total cable length is preserved by augmenting the stiffness
matrix Ktens with a linear constraint

ð8Þ

A closer look at Eq. (7) reveals that the stiffness matrix Ktens is exclu-
sively based on bar related terms so that the geometric stiffness ma-
trix disappears and the material stiffness matrix becomes singular
for Lbi ¼ Lbi

0 . This can be avoided by choosing a sufficiently small to-
tal cable length at the start of the simulation. Furthermore, the first
few iteration steps of the form-finding are generally large. There-
fore, it is advisable to limit the maximum step size or to implement
a line search algorithm like, for example, the golden section meth-
od, Vanderplaats (2001). Throughout this paper, the maximum
change of a single cable length was constrained to DLc

max. A
pseudo-code of the proposed form-finding method is given in
Algorithm 2.
Algorithm 1. Pseudo-code of Stage 1.

Algorithm 2. Pseudo-code of proposed form-finding method.
4. Examples

This section presents two- and three-dimensional examples
that demonstrate the form-finding and convergence properties of
the proposed algorithm.
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Lb=[√2, √2]
Lc=[1.5, 1.0, 0.3, 0.4]

0

Initial configuration Iteration 1 Iteration 2 Iteration 3

(a) Example 1

Lb=[1/√2, 3/√2]
Lc=[1.5, 1.3, 0.3, 0.4]

0

(b) Example 2

Fig. 4. Initial configurations and first three iterations of two-dimensional examples.

Table 2
Geometric, material and algorithm parameters for three-dimensional examples.

AbEb AcEc Acrc DLc
FFD DLc

max

Stage 1 1 105 AcEcec
G 10�4 –

Stage 2 1 0 1 – 0.25

Bars
Cables

2

7

10

1112

1

5

6

9

Fig. 6. Topology and element numbering of three-dimensional examples.
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4.1. Two-dimensional examples

The geometric, material and algorithm parameters for the two-
dimensional examples are summarized in Table 1. Note that DLc

FFD

is the step size for the forward finite difference scheme to compute
(3) and (4). Furthermore, DLc

max is the maximum change of a single
cable length during an iteration.

The topology and element numbering for both examples is gi-
ven in Fig. 3. Fig. 4 shows the initial configurations and the first
three iterations. The initial configuration is a stable equilibrium
for given cable lengths Lc and undeformed bar lengths Lb

0. It can
be seen that the first example converges to a square and the second
example to a rhombus after only three iterations. Note that the to-
tal cable length of the square/rhombus is identical to the total
cable length of the corresponding initial configurations.

Fig. 5 shows the convergence of

jDLcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DLc2

1 þ � � � þ DLc2
nc

q
ð9Þ

and the Lagrange multiplier k for a maximum step size of
DLc

max ¼ 0:5. Note that the effective cable forces are Acirci þ k so that
the bars are unstressed for k ¼ �1. Therefore, if k! �1 it is neces-
sary to decrease the total cable length in order to avoid a singular
stiffness matrix.

4.2. Three-dimensional examples

The geometric and material properties as well as the algorithm
parameters for the three-dimensional examples are summarized in
Table 2. The topology and the element numbering is given in Fig. 6.
Since the bars describe two independent tetrahedrons it was
decided to use this representation in order to simplify the interpre-
tation of the figures.
Example 1
Example 2

ΔLc     =0.5

1 2 3 4 5 6
Iteration Number

7 8

10-8

10-4

100

| ΔLc |

10-12

max

(a) Change of cable lengths

Fig. 5. Convergence of two-
Fig. 7 shows four different initial configurations and the result-
ing tensegrities. Note that all tensegrities have the same topology,
total cable length and undeformed bars. It can be seen that the final
result depends heavily on the initial configuration. Furthermore,
the initial equilibrium configuration for a given set of cable lengths
is generally not unique. The high degree of symmetry of the pre-
sented tensegrities is driven by the assumption of uniform bar
lengths and cable forces. However, the proposed algorithm is capa-
ble of finding tensegrities for arbitrary bar lengths and cable forces.
1 2 3 4 5 6
Iteration Number

7 8

-0.85

-0.86

-0.87

-0.88

-0.89

(b) Lagrange multiplier

dimensional examples.
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Lb=√2
Lc=[1, 2/3, 2/3, 1, 1, 2/3, 1, 2/3,...
 2/3, 1, 1, 2/3]

Resulting tensegrity

0

Initial configuration

(a) Example 1

Lb=√2
Lc=[ 5/4, 1/2, 1/2, 5/4, 7/6, 1/3,...
 7/6, 1/3, 1/2, 5/4, 5/4, 1/2]

0

(b) Example 2

Lb=√2
Lc=[4/3, 2/3, 2/3, 4/3, 2/3, 1/3,...
 2/3, 1/3, 2/3, 4/3, 4/3, 2/3]

0

(c) Example 3

Lb=√2
Lc=[ 5/4, 0.55, 0.55, 5/4, 1/5, 5/4,...
 0.1, 5/4, 0.55, 5/4, 5/4, 0.55]

0

(d) Example 4

Fig. 7. Initial configurations and resulting tensegrities of three-dimensional exam-
ples. Note that, for all examples,

Pnc
i¼1Lci ¼ 10.

1 3 5 7 9 11
Iteration Number

13 15

10-8

10-6

10-4

10-2

100

10-10

10-12

Example 1
Example 2
Example 3
Example 4

ΔLc     =0.25

|ΔLc|

max

(a) Change of cable lengths

Fig. 8. Convergence of three
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Fig. 8 shows the convergence of the three-dimensional examples
for DLc

max ¼ 0:25.
5. Tensegrities and symmetry

Previous examples have in common that their topologies are
statically indeterminate. Therefore,

dnn � ne � ns ¼ k < 0 ð10Þ

where d is the spatial dimension, nn the number of nodes, ne the
number of elements, ns the number of supports (ns ¼ 6 for
d ¼ 3 and ns ¼ 3 for d ¼ 2) and �k are the states of self stress.

However, there exists a great number of tensegrities where
k P 0. A general property of such tensegrities is that they possess
a high degree of symmetry. Since these structures are statically
determinate, k ¼ 0, or even kinematic, k > 0, it is not possible to
directly apply the previously introduced algorithm. Instead it is
necessary to constrain these structures by assuming a certain sym-
metry group (by enforcing symmetry we indirectly increase ns).
This can be done by transforming the stiffness matrices of the first
and second stage (see Fig. 2) into symmetry space by using trans-
formation matrices that were introduced by Pagitz and James
(2007). Since these transformation matrices are based on Fourier
series and vector spherical harmonics it is possible to construct
them purely from geometric arguments. Hence, no group theory
is required. An example for the block diagonalization of large stiff-
ness matrices can be found in Pagitz and Pellegrino (2007).
6. Conclusions

We presented a novel numerical method for the form-finding of
tensegrity structures that is based on the finite element method.
The proposed algorithm reduces the solution space, depending
on the spatial dimension, from 2nn or 3nn to nc þ 1 degrees of free-
dom where nn is the number of nodes and nc the number of cables.
As a result, the form-finding only requires a linear constraint so
that a deep understanding of the form-finding process itself is ob-
tained. It was demonstrated that the method converges within a
few iterations from highly distorted initial configurations to a
tensegrity. Finally, it was discussed how symmetry transformation
matrices can be used to find tensegrity configurations that are stat-
ically determinate or kinematic.
1 3 5 7 9 11
Iteration Number

13 15

-0.60

-0.65

-0.70

-0.75

-0.80

-0.85

-0.90

-0.95

(b) Lagrange multiplier

-dimensional examples.
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1

2

1*

2*
L0

L

x

y

(x2, y2)

(x1, y1)

(x2+u2, y2+v2)

(x1+u1, y1+v1)

Reference
Configuration

Actual
Configuration

Fig. A.1. Global cartesian coordinate system of bar element in two dimensions.
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Appendix A. Nonlinear bar finite element

This appendix provides a brief derivation of a two-node geo-
metric nonlinear bar finite element that is used in the first stage
of the proposed algorithm.

Several different strain measures are used in mechanics. The
most well known is the so-called engineering strain

eE ¼
L� L0

L0
ðA:1Þ

where L0 is the undeformed and L the deformed bar length, Fig. A.1.
This measure has the advantage that the strain eE is proportional to
the change of bar length. The engineering strain is based on radicals
since the bar lengths

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

21 þ y2
21 þ z2

21

q
;

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ u21Þ2 þ ðy21 þ v21Þ2 þ ðz21 þw21Þ2

q
ðA:2Þ

are computed from nodal coordinates where, for example,
x21 ¼ x2 � x1. Strain measures that avoid these radicals are often
used in order to simplify the derivation of finite elements. One of
the most well known is the Green–Lagrange strain measure

eG ¼
L2 � L2

0

2L2
0

ðA:3Þ

It should be noted that both strain measures have the same tangent
for infinitesimally small deformations. For the sake of simplicity we
will use the Green–Lagrange strain in the following.

The energy P of a bar without prestress is

P ¼ EA
Z L

L0

eGðLÞdL ¼ EA
L3 � L3

0

6L2
0

� L� L0

2

 !
ðA:4Þ

so that the internal force vector p ¼ oP=ou results in

p ¼ EA
L

eG½ �ax �ay �az ax ay az �T

� EA
L0

eG½ �ax �ay �az ax ay az �T ðA:5Þ

where u are the nodal displacements and, for example,
ax ¼ x21 þ u21. Finally, the stiffness matrix K ¼ op=ou is
K � EA

L3
0

a2
x axay axaz �a2

x �axay �axaz

a2
y ayaz �axay �a2

y �ayaz

a2
z �axaz �ayaz �a2

z
a2

x axay axaz

Sym: a2
y ayaz

a2
z

2
6666664

3
7777775

þ EA
L0

eG

1 0 0 �1 0 0
1 0 0 �1 0

1 0 0 �1
1 0 0

Sym: 1 0
1

2
6666664

3
7777775: ðA:6Þ
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