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Abstract

We consider the task of mapping pedestrian urban areas for a robotic guidance and surveil-

lance application. This mapping is performed by registering three-dimensional laser range scans

acquired with two different robots.

To solve this task we will use the Iterative Closes Point (ICP) algorithm proposed in [8],

but for the minimization step we will use the metric proposed by Biota et al. [10] trying to

get advantage of the compensation between translation and rotation they mention. To reduce

computational cost in the original ICP during matching, the correspondences search is done

with the library Approximate Nearest Neighbor (ANN). Finally we propose a hierarchical new

correspondence search strategy, using a point-to-plane strategy at the highest level and the

point-to-point metric at finer levels. At the highest level the adjust error between a plane and

it’s n adjacent points describing the plane is computed, if this error is bigger than a threshold

then we change the level.
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1 Problem Statement

We consider the task of mapping pedestrian urban areas for a robotic guidance and surveillance

application. Multiple 3D scans are necessary to build a map with enough environment infor-

mation. To create a correct and consistent map, the scans must to have a common reference

coordinate system. This process is called registration. If the 3D systems were precisely locate

with the robots odometry, the registration could be done directly with this information. How-

ever, because the uncertainty on the robot sensors, self localization is erroneous, so a method

to have a correct overlap of the 3D scans has to be considered. The mapping is performed by

registering 3D laser range scans acquired with two different robots. This mapping application

is part of the EU URUS Project (Ubiquitous Network Robotics in Urban Settings).

2 State of the art

Scan matching algorithms are often used in mobile robotics to correct the relative motion of a

vehicle between two consecutive configurations, by maximizing the overlap between the range

measurements obtained at each configuration. The most popular scan matching methods [31]

are based on the ICP from Besl and Mckey [8] which is borrowed from the computer vision

community. The objective of this algorithm is; to compute the relative motion between two

data sets partially overlapped. The algorithm iteratively minimizes the MSE and proceeds as

follows: first, for each point in one data set, the closest point in the second one is found or vise

versa (correspondence step), then the motion that minimizes the Mean Square Error (MSE)

between the correspondences is computed (registration step), finally the data shape is updated

(update step).

In the registration proposed by Besl and Mckey a point-to-point metric is used to measure the

“closeness” of data, they also suggest an accelerated version of the algorithm by using a linear

approximation and a parabolic interpolation with the last three minimization vectors if they

are well aligned, which means they have been moving in an approximately constant direction.

The use of sampling or tree-based-search to speed up the algorithm are mentioned as future

refinements to reduce the computational cost. Chen and Medioni [13] proposed a point-to-

plane error metric, which makes the algorithm less susceptible to local minima than the metric

proposed by Besl and Mackey [8]. The idea in [13] is, that given a so called control point in the
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first surface, to compute the distance to the nearest tangent plane in the second cloud. Blais

[11] suggests a point-to-projection solution computing the sum of the distances between the two

range views in the direction of the rays. This has also been called “reverse calibration”. This

approach makes registration very fast because it does not involve any search step to find the

correspondences. However, one of its disadvantages is that the resulting registration is not as

accurate as the one given in the point-to-point and point-to-plane metrics [31]. Turk and Levoy

[35] proposed a point-to-triangle correspondence using meshes which they call zippered meshes

finding the nearest position on a mesh to each vertex of an other mesh. They find the rigid

transformation that minimizes a weighted least-squared distance between correspondences with

a value in the range from 0 to 1 called confidence. For the case of structured light scanners, they

measure the the confidence of a point on a mesh to be the angle between the mesh normal and the

sensor viewing angle. The confidence is a measure of how certain they are of a given range point’s

position, which helps to eliminate possible wrong matches. Chetverikov et al. [15] presented

a robustified extension of the ICP applicable to overlaps under 50%, robust to erroneous and

incomplete measurements, and has easy-to-set parameters called Trimmed ICP (TrICP). The

algorithm is based on the consistent use of the Least Trimmed Square [30] in all phases of the

operation, on the other hand Yamany et al. [1] used genetic algorithms maximizing an objective

function, where the genes are formed by concatenating six binary coded parameters, representing

the three angles of rotation and the 3 dof for translations. More recently, a new error metric

which explores the compensation between the rotation and translation was proposed by Minguez

et al. [23, 24] for the 2D space and Biota et al. [9, 10] extended this metric to the 3D space. They

used a point-to-projection minimization using triangles as the projection surface, and perform

the Nearest Neighbor (NN) correspondences in the space of the new metric space. They did not

tackle the computational complexity of the algorithm in any way, so it is understood they use

brute force search to do the matching.

The ICP bottleneck in time execution is when searching for point matches. One strategy to

reduce the computational complexity is to use tree-based search techniques [28]. Nütcher et

al.[25] uses a library called Approximate Nearest Neigborh (ANN), developed by Arya and

Mount [5], that uses a balanced kd-tree or box decomposition tree (bd-trees). Also Nütcher et

al. [25] proved that kd-trees are faster than bd-trees to the NN problem. Simon et al.[32] used a

kd-tree but using a catching points technique, where in the first iteration n neighbors for all the
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points in the reference cloud are found from the model query and they are cached. It is assumed

that after updating the reference cloud, the cached points for each point in the updated cloud

should be neighbors. Benjemaa [6] used a double z-buffer structure which provides an explicit

space partitioning. Yamany et al. [1] said that the time matching can be significantly reduced

by applying a grid closest point (GCP) technique. The GCP is an other sampling scheme

which consists of superimposing a 3D fine grid on the 3D space such that the two clouds lie

inside the grid, dividing the 3D space on cells, each cell with an index of its closest point in

the model set. Greenspan and Godin [17] presented a new solution for the NN search for the

matching step which they called Spherical Triangle Constraint. Like Simon et al. [32], they

store correspondences at each iteration so that these are available at the next iteration. The

Spherical Constraint is applied to determine whether or not the nearest neighbor falls within

the neighborhood of each point estimate, and if so, the Triangle Constraint and the Ordering

Theorem, are applied to the neighborhood to quickly identify the correspondence. The Ordering

Theorem orders a set of points by increasing distance to some point. They shown that after

aprox. 20 iterations, their method is more efficient than kd-trees in computational complexity

and time execution. More recently Akca and Gruen[2] used a box structure [14] which partitions

the search space into boxes, where for a given surface element, the correspondence is searched

only in the box containing this element and in the adjacent boxes, the correspondence is searched

in the boxing structure during the first few iterations, and in the meantime its evolution is tracked

across the iterations. In the end, the searching process is carried out only in an adaptive local

neighborhood according to the previous position and change of correspondence. One of the main

advantages of the box structure is that it has a faster and easier access mechanism than the

tree-based search methods provide.

A another common strategy to accelerate the matching process is to reduce the number of

points. Sampling the data reduces the match execution time by a constant factor, but retains

linear asymptotic computational complexity. Coarse-to-fine strategies haven been used by Zhang

[37] and Turk and Levoy [35]. They start using a less detailed description of the data and as

the algorithm approaches the solution, the resolution is hierarchically increased. The techniques

used for sampling data vary. Turk and Levoy [35] and Blais [11] used uniform sampling. Masuda

et al. [22] used intead, random sampling for each iteration. Moreover, Nütcher et al. [27] and

Gutmann [18] used a technique best suited to the nature of data for laser range finders so called,
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reduction filter, which has been shown to work well on realtime applications .

However, sampled methods are very sensitive to data content, i.e. noise level, occlusion areas,

complexity of the range data, etc. If too many points come from outliers due to sensor errors,

this may produce too many wrong correspondences, and may cause the solution to converge

on a local minimum leading a poor final overlap, or in the worst case, to divergence. We shall

remember that the original algorithm from Besl and Mackay considers data sets without outliers.

Several approaches to dismiss possibles outliers have been proposed using rejection strategies.

Rejections based on thresholds for the maximum tolerable distance between paired points were

implemented by Turk and Levoy[35], the threshold is set as twice the maximum tolerable space

between range point meshes; and is adaptively changed when building the the points in the

mesh. Rejection that use a statistical method based on the distribution of point distances were

used by Zhang [37], and Pulli [29], who used two thresholds for the maximum allowed distance

between paired points, one of them dynamic. Masuda et al. [22] also rejects pair matches whose

point-to-point distance are larger than some multiple of the standar deviation of distances. Pulli

as well as Turk and Levoy [35] use not only statistical reasoning, but also topological information

to discard matches. They removed matches that occur on mesh boundaries, and Zhang [37] and

Pulli [29] used the angle between the normals of the paired points as a constrain to keep matches.

When using a laser range data Nütcher et al. [27] use a median filter to remove the Gaussian

noise for each scan row.

Another issue on the ICP is the rate of convergence of the minimization step. To accelerate

such convergence and to reduce overshoot, some authors propose minor changes to the original

extrapolation proposal of Besl and McKay. For instance, Rusinkiewicz and Levoy [31] used

the update based on linear zero crossing of the line instead of the extremum of the parabola

when quadratic extrapolation is attempted and the parabola opens downwards, and multiply the

amount of extrapolation by a dampening factor, arbitrarily set to 0.5 in their implementation.

Even when this occasionally reduces the benefit of extrapolation, it also increases stability and

eliminates many problems with overshoot. Simon et al. [32] said that while Besl and McKay

calculate a single acceleration scale factor for both translation and rotation, they decouple the

acceleration of translation and rotation achieving better results.
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3 Range image registration

In this section, the Iterative Closest Point (ICP) is described in detail. In the minimization step

we will use the metric proposed by Biota et al. [10] trying to get advantage of the compensation

between translation and rotation they mentioned. To reduce computational cost in the original

ICP during matching, the original data is sampled and the NN search is done with the library

Aproximate Neares Neighbor (ANN). Finally we propose a new hierarchical correspondence

search strategy, using a point-to-plane metric at the highest level and the point-to-point search

at finer levels. At the highest level the adjust error between a plane and its n adjacent points

describing the plane is computed, if this error is bigger than an user specified threshold we

change the level.

Given a set of 3D points, S = {p1, p2, ..., pn} acquired from a reference frame q = [x, y, z, rx, ry, rz ],

and S′ = {p′1, p
′
2, ..., p

′
m} a set acquired from a new frame q′ =

[
x′, y′, z′, r′x, r′y, r

′
z

]
, we need to

estimate the relative displacement between the sensor poses at q and q′. The ICP deals with

this problem in an iterative process in four steps [8]. At each iteration k, there is a search of cor-

respondences between the points of both scans, then the relative displacement qk is computed

by a minimization process. The model scans are updated with the last computed qk; this is

repeated until convergence.

3.1 Correspondences Search

The basic idea in correspondence search is to find the closest point px to a given reference point pq

in a reference set S, and according to a specified metric, usually Euclidean distance. It is known

as the Nearest Neighbor (NN) problem, also known as closest point search. A correspondence

is established by means of the correspondence operator C, which is the closes point operator

defined by:

C(pq, Sref,k) = argmin
︸ ︷︷ ︸

px∈Sref,k

‖(px − pq)‖ (1)

Specifically our problem is to find for each point pi in S (in case that exist) the closest point pix

in S′, resulting in a subset Y of n correspondences (pj , pjx). Then for each iteration k a subset

Yk is given by:
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Yk = C(S, S′
k)

Besl and McKey [8] assume that for each point in reference set must be a correspondence in the

data set, in our application this is not the case.

3.2 Registration Step

According with Biota et al [10], the registration problem is solved using a Last Square Minimiza-

tion (LSM) to compute the q that minimize the realtive displacement between the two points

sets. Given two associated points pi = (pix, piy, piz) and p′′i = (p′′ix, p′′iy, p
′′
iz), the next expression

needs to be minimized:

Edist(q) =

n∑

i=1

dap
p (pi, q(p

′′
i )

2 (2)

The above equation could be expressed as follows

Edist(q) = δT
i (q)Mδi(q) (3)

Where

δi(q) = pi − qp′′i ≈ pi − p′′i + U(p′′i )r − T

and

U(p′′i ) =









0 −p′′iz p′′iy

p′′iz 0 −p′′ix

−p′′iy p′′ix 0









M =









p2
ix + L2 pixpiy pixpiz

pixpiy p2
iy + L2 piypiz

pixpiz piypiz p2
iz + L2









Finally, the q that minimizes equation (3) is given by:
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qmin =






∑n
i=1






M −MU(p′′i )

−UT (p′′i )M UT (p′′i )MU(p′′i )











−1

·
n∑

i=1






Mδ

UMδ






4 Data association

In the ICP, finding the correspondences is the most computationally expensive step. Kd-trees

are suggested in [8], demonstrated in [37] as an alternative, and later implemented in [32, 27] to

speed up this step,

4.1 The kd-trees

The kd-trees are a generalization of the binary search trees. The idea behind this data structures

(trees) is to extend the notion of a one dimension tree on a recursive subdivision of the space, i.e.

for the 2D case the subdivision alternate in using the x or y coordinates to split Fig. 4.1(left) .

Therefore we first split on x, next on y, then again on x, and so on. In general dimension, the

kd-tree cycles among the various possible splitting dimensions. Each partition (of a point set) is

represented by a node containing the two successor nodes or by a bounding box that contains the

data points for this node Fig. 4.1(right). The root node represents the whole point cloud and the

leafs form a disjunct partition of the set. As long as the number of data points associated with

a node is greater than a small quantity, called the bucket size (Friedman et al. [16] proved that

a bucket size of 1 is optimal ), the box is split into two boxes by an axis-orthogonal hyperplane

that intersects this box.

Figure 1: A kd-tree example: subdivided data (left) and the corresponding binary tree (right)

There are different splitting rules which determine how this hyperplane is selected. The choice
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of the splitting rule affects the shape of cells and the structure of the resulting tree.

• Standard splitting rule: The splitting dimension is the dimension of the maximum spread

(difference between the maximum and minimum values), leading to many cells with high

aspect ratio Fig. 2(a). The splitting point is the median of the coordinates along this

dimension. A median partition of the points is then performed. This rule guarantees that

the final tree has height (log2n), also guarantees that every kd-tree entry has the same

probability. Friedman et al. [16] introduced this splitting rule in their definition of the

optimized kd-tree.

• Midpoint splitting rule: When splitting the space, to guarantee that the tree is balanced,

the most common method is the midpoint splitting rule. The splitting value is the median

splitting coordinate Fig. 2(b). As a result, the tree will have O(logn) height.

• Sliding-midpoint splitting rule: First a midpoint split is attempted. If the data points lie

on both sides of the splitting plane then the splitting plane remains here. However, if all

the data points lie to one side of the splitting plane, then splitting plane “slides” toward

the data points until it encounters the first point. One child is a leaf cell containing this

single point, and the algorithm recurses on the remaining points Fig. 2(c).

(a) Standard split (b) Midpoint split (c) Sliding-midpoint split

Figure 2: A kd-tree splitting rules example

4.2 Nearest Neighbor Search using kd-trees

In section 3.1, we mentioned the need to solve the NN correspondence problem as one of the

step of the ICP algorithm. Now we are going to explain how to tackle this issue using kd-

trees. A simple and naive way to approach the NN problem is by using brute force search,
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where the closest point is found computing the distance (given a metric) between each point in

Sref and pq, this is highly expensive in computation time, O(n) worst case with expected cost

log(n). Friedman et al. [16] showed that O(log n) query time is possible in the average case

through the use of kd-trees. Their use ensures that the nearest data point to pq could be found

efficiently. High-dimensional (at least three) NN problems arise naturally when complex objects

are represented by vectors of d numeric features.

Finding the NN to a given query point relies on the ability to discard large portions of the tree

by performing a simple test. The tree is searched in a depth-first fashion and at each stage it

makes an approximation to the nearest distance. When the algorithm decides that there cannot

possibly be a closer point it terminates, giving the nearest neighbor.

First, the root node is examined with an initial assumption that the smallest distance to the

next point is infinite. The subdomain (right or left), which is a hyperrectangle (in 3D space this

is a rectangular prism), containing the target point is searched. This is done recursively until

a final minimum region containing the node is found. The algorithm then (through recursion)

examines each parent node, seeing if it is possible for the other domain to contain a point that is

closer. This is performed by testing for the possibility of intersection between the hyperrectangle

and the hypersphere (a plain sphere in 3D) formed by target node and distance to the current

best NN estimate. If the rectangle that has not been recursively examined yet does not intersect

this sphere, then there is no way that the rectangle can contain a point that is a better nearest

neighbor. This is repeated until all domains are either searched or discarded, thus leaving the

nearest neighbor as the final result. In addition the algorithm not only provides the NN, but

also the square of the distance to the NN. Finding the nearest point is an O(logN) operation.

4.3 A Nearest Neighbor Library

Like in [25] we use the Approximate Nearest Neighbor (ANN) library by Arya et al. [5]. ANN is a

library of C++ objects and procedures that supports the NN search and the approximate nearest

neighbor search. It is designed for data sets that can be stored in main memory. Points are

assumed to be represented as coordinate vectors of reals. The distance between two points can

be defined in many ways. ANN assumes that distances are measured using any class of distance

functions called Minkowski metrics, including the Euclidean distance, Manhattan distance, and

max distance. Preprocessing time and space are both linear in the number of points n and the
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dimension d. Thus the data structure requires storage that is only moderately larger than the

underlying data set. Also it supports kd-trees [16, 7], and box-decomposition trees [5], it is able

to use different methods for building these search structures and it also supports two methods

for searching these structures: standard tree-ordered search [4] and priority search [5].

4.4 Point-to-point association

The distance between two associated points is normally defined by one of the Minkowski metrics

such as the norm L2 (Euclidean distance) defined by :

dist(p, p′′) =




∑

0≤i<d

(pi − p′′i )
2





1/2

(4)

where d is the dimension size of the data working with.

An alternative to the euclidean distance, could be defined by the metric proposed bye Biota et al.

[9, 10], where a 3D rigid transformation is defined by a vector q = (x, y, z, θnx, θny, θnz), which

represents position and orientation (−π < θ < π) of a range finder laser sensor . Therefore, q

norm is defined as:

‖q‖ =
√

x2 + y2 + z2 + L2θ2 (5)

with L ∈ R
+ for a distance. Given two points p1 = (p1x, p1y, p1z) ∈ S′ and p2 = (p2x, p2y, p2z)

∈ S, the distance between both points is:

dp(p1, p2) = min {‖q‖ | q(p1) = p2} (6)

where

q(p1) = R(n, θ)p1 + T (7)

with T , the translation vector (x, y, z) and R(n, θ) the matrix of rotation angle θ about the unit

vector n = (nx, ny, nz). Unfortunately there is no closed form expression of dp with respect to

the coordinates of the points. However a valid approximation could be computed with small

rotations. Linearizing Eq. (7) about θ = 0, we get cosθ ≈ 1 and sinθ ≈ 0. Developing Eq.(6)we

obtain:
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dap
p (p1, p2)

2 = δT Mδ (8)

= ‖δ‖2 −
‖p1 × δ‖2

k
(9)

(10)

Working out the square value from Eq. (9), we get:

dap
p (p1, p2) =

√

‖δ‖2 −
‖p1 × δ‖2

k
(11)

where k = ‖p1‖
2 + L2, δ = p2 − p1 and L is the balance the trade-off between translation

and rotation, this is user especified. When L → ∞ the new distance tends to the euclidean

distance.

4.5 Point-to-plane association

The objective is to find the closest point in the plane to a given point xi. The first step is, given a

cloud of 3D data points, S1, containing N individuals points (p1, p2, ...pN ), to compute the near-

est oriented tangent plane Tp to xi. The correspondent nearest tangent plane to xi is computed

by finding the set of k nearest points to xi in S1, this set is called STp,i = (sTp,1, sTp,2...sTp,k).

Then the plane could be represented by a point oi, together with a unit normal vector n̂i, see

Fig. (3).

Figure 3: Points defining a plane

The point oi, called center point is computed finding the media of STp and accordingly with

Cetto and Villamizar [3]. n̂i could be obtained by computing an eigenvector of the 3x3 matrix

R defined by:
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R = Q −
qqT

k2

where

q =
n∑

i=1

sTp,i

Q =

n∑

i=1

sTp,is
T
Tp,i

then

n̂i = eig(R)

Once the plane is defined, it is necessary to find the minimum distance di between Tp,i and xi,

where the signed distance is defined to be di = (xi − oi) · n̂i. Finally with the knowledge of n̂i,oi

and di , it is possible to compute the point in the plane associated to di. Then ~di = n̂i · di and

from Fig. 4 :

~w = ~xi − ~oi

~ri = ~w − ~di (12)

~sT,i = ~oi − ~ri (13)

Substituting Eq. (12) on (13) and developing:

~sT,i = ~oi + ~w − ~di

= ~xi − ~di (14)

Finally the closes point in the plane correspondent to xi is from Eq.(14), the point associated

to ~sT,i
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Figure 4: Query point xi and its closest point sT,i in the plane

4.6 Data Reduction

When a scanned surface is too dense reducing the number of points is an other strategy used

to decrease the execution time. It helps to reduce the NN execution time by a constant factor.

Sampling the acquired sensor data preserving the geometric nature of the surface, is one of the

the strategies we use, and have been proved in [31] to be an effective approach. On the other

hand we limit the distances in the x, y an z directions.

4.6.1 Uniform sampling

To get an uniform sampling, the space is splitted using rectangular boxes (bounding boxes).

Initially a major box is created using the maximum an minimum value for each coordinate

plus a little δ in all directions, the resulting box is given by (xmin − δ, ymin − δ, zmin − δ)

and (xmax + δ, ymax + δ, zmax + δ). Then a user defined value (boxsize) is given to determine

the size for each individual box. Now the boxes maximum number for each axis is computed as

ceil((max−min)/boxsize). Next for each point the correspondent box index (ix, iy, iz) is obtained

by ceil((datai − min)/boxsize), finally the median of the points stored in each individual box is

computed.

4.6.2 Limit axis distance

The other technique to reduce the number of points is done limiting the maximum distance in

the x,y and z directions, which also contributes like a filter, because points far from the center

do not contribute with important information about the scene and some of them could even be

considered as noise. Another reason to apply these limits is to help trade between the points
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in the vertical and the horizontal surfaces, we have observed that if one of both surface have a

grater amount of points it could lead to a final missalignment.

The result of applying the mentioned reduction strategies is shown in Fig. 5(b).

(a) Acquired data (b) Subsampled data

Figure 5: 3D Range laser data acquired with the ETHZ Smartter robot

4.7 Filtering the associated data

Some of the correspondences can eventually come from wrong matches because of noise data

or zones with low information. For this reason during the NN search, the corresponding points

with a distance bigger than an specified distance threshold (dtr) are rejected, also as ANN

could assign a point pi,ref from Sref as the closes point to several query points belonging to

the query set Sq. A filter that warranties that any point in Sref and Sq has one and only one

correspondence, is applied when using the point-to-point metric.

Also a filter based on Pulli’s idea [29] of rejecting the worst n% of pairs is performed, but we

do not use any metric. This is done using histograms and by examinating the histogram we are

able to acept a desired m%.

And to deal with the Gaussian noise we present the median filter described in [18].

4.8 Median filter

Scans are noisy and small errors may occur. Two kind of errors mainly occur, Gaussian noise,

which occurs for example at the edges, where the laser beam of the scan hits 2 surfaces resulting

in a mean and erroneous data value and the error produced for very reflecting areas. To correct
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Figure 6: Histogram from the matching (left), filtered histogram (right) with a 92% data acepted

this error [27] used a fast filtering method to smooth the data. The data is stored in the order it

was taken, so with knowing of that we applied the median filter [18].The median filter is capable

to recognize noise in a scan and to replace with a suitable measurement. To do this, a window

becomes for each scan point pi about the scan point, that contains the last few measurements

beside the scan point itself, before and after this point. The scan point then is replaced with a

new scan point ui. The points inside the window are sorted according to their range value, and ui

is the median value in the window Fig. 7(b). The parameter median-number-points determines

the window, with which the median filter works. As a large window widths are able to distort

the scan, typical values for the windows are rather small, a value of median-number-points = 5

has proved to work well [18].

(a) Selecting the window (b) Point ui in
black

(c) Result

Figure 7: Median filter

4.9 A Hybrid Hierarchic Approach to Data Association

When finding the correspondences several techniques have been implemented, point-to-point

metric [8, 27, 32], point-to-plane metric [13, 37], and point-to-projection metric with triangu-
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lar surfaces [9, 10, 11]. Differently from them in our method we propose a hierarchical new

correspondence search strategy, using a point-to-plane strategy at the highest level and the

point-to-point metric at finer levels. First, the closest plane to a query point is computed with

the n NN points from the reference data as in Sec. (4.5), once the plane is defined, we obtain the

distance between the plane and it’s adjacent n points as an error measurement, called tangent

plane error. The error given by:

eTp =
1

n

n∑

i=1

(dist(Tp, pi)) (15)

where dist(Tp, pi) is defined by:

dist(Tp, pi) =
√

((pi − oTp) · n̂Tp)
2

Figure 8: Plane and the errors with its adjacent points

If the tangent plane error is greater than a desired threshold (eTpTr) then the point-to-point

metric is used instead. Once we have the correspondences set Y we use the minimization from

Sec. (3.2) to find the displacement between S and S′

5 Experiments

In the next section the developed experiments are described, beginning with the acquisition of

the 3D clouds using two different robots. The first robot is able to take scans with a vertical

coverage of 360◦ and in the second robot the vertical coverage is limited by the range finder

(190◦). Next, some details of the values for the sampling strategies applied are given. Then we

talk about ours algorithm implementation and the results for the point-to-point, point-to-plane,
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and our metric in the Euclidean space and in Biota’s metric space in the minimization step.

Finally the conclusions are given. The data sets were acquired in the UPC Campus Nord, at

the experiments area for the URUS project. This is urban environment with trees, benches,

buildings and so on. The ground level in this area varies.

5.1 Data Acquisition

The methods for representing 3D spaces with mobile robots could be divided in two main groups,

in the first group they used two 2D range lasers, one in horizontal position and the other in

vertical position, Thrun et al. [34] use this system for indoors mounted in a pioneer platform,

and Howard et al. [?], perform outdoors scans using a segway platform. In the second group a

single laser is mounted moved by a motor (servomotor, stepper motor or DC motor) in pan or

tilt configuration, some authors used a tilt mounting for scanning indoors [33, 36] and others

[21, 26, 27] for outdoors, in such cases the vertical coverage restricted for the range laser used,

usually about 180◦,and the horizontal coverage depends on the designed system, while in the

mounting pan system it is at the inverse [12]. More recently Lamon et al. [20] presented a

rotational system using two laser to get a full 360◦ vertical scanned scenario with a the Smartter

robot.

A 3D data set was taken by the Smartter robot from the “Eidgenössische Technische Hochschule”

(ETHZ) of Switzerland [20]. The range system in the Samartter consists of two 2D range lasers

Sick LMS291-S05 rotating around a vertical axis (pan rotation) Fig. 9(b), delivering point

clouds with a 360◦ vertical coverage. Each second, a full 3D scan of the environment around the

vehicle is acquired. Also they used wheel encoders, a differential gps, optical gyro and inertial

measurement unit, to get a consistent data set Fig. 9(a), each scan is between 5,000 and 20,000

points.

A second data set was obtained using a high definition laser range system designed at the

IRI. The IRI 3D range laser [19] is mounted on an Activmedia Pioneer 2AT robotic platform

(HELENA) Fig. 10(a). The IRI 3D range laser is based in the idea by [21, 27, 36] using

a 2D range laser sensor for pan readings (RS4 Lueze) mounted with a motor giving the tilt

movement. The RS4-Leuze has a 528 points maximum resolution per scan line, in a 190.08◦

(−5.04◦ < θlaser < 185.04◦) amplitude, it means that every 0.36◦ a point is obtained. Each scan

is about 76,000 points. In this case only the odometry coming from the Activmedia platform
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(a) Positioning sensors (b) 3D scanner

(c) Single scan

Figure 9: Smartter robot from ETHZ, and a single scan
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was used to get a first estimation of the map.

(a) Positioning sensors (b) 3D scanner

(c) Single scan

Figure 10: Helena robot from IRI UPC, and a single scan

5.2 Implementation

In all the previous section the tools for our proposal have been stated. Once we have the data

taken we apply the sampling strategies from section 4.6 using for each sampling step and the

median filter the values in table (1), all the values were set up experimentally except for the

median filter value equal to 5 as suggested in [18]

Data set Uni. Samp. box size(m) Max. (x,y) (m) Max z (m)

Smartter 0.45 ± 23 8

Helena 0.35 ± 25 9

Table 1: Sampling values for the data

Our ICP algorithm is resumed by the next procedure for each step k:

1. Find the correspondences set Yk between S and S′
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2. Compute the MSE ek

3. Apply the minimization proposed to compute qmin,k

4. Recover the transformation matrix Hk from qmin,k

5. Updating step, transform S′
k with Hk

6. Compute the MSE dk

7. Apply the above steps until convergence, according with our convergence theorem

The NN search was performed with the ANN library using kd-tree with the sliding-midpoint

splitting rule and a unit bucket size. The entire ICP algorithm was implemented and tested over

the data sets acquired with both robots (ETHZ’s Smartter and IRI’s Helena). An empirical

comparison was made for the point-to-point, point-to-plane and the hybrid correspondences

search using L = ∞ and L = 50 for the hybrid case. When using the point-to plane method

to search for correspondences, local planar planes were fitted using 12 NN for each query point.

For ETHZ’s data sets we have set experimentally the following parameters; a maximum of 25

iterations, a filtering of 10% of the data, a pairing distance filter threshold of 3.3m, an 0.1

error threshold between e2 k and d2k for the convergence parameters, a minimum error for

d2
k = 0.18m, and in the hybrid case a maximum tangent plane error eTp = 0.18m. For the IRI

data set we decided experimentally also, the following parameters, a maximum of 20 iterations,

92% accepted data, a pairing distance filter threshold of 3.3m for the filter parameters, 0.05 error

threshold between e2
k and d2

k, a minimum error for d2
k = 0.065m for the convergence parameters,

and in the hybrid cases a maximum tangent plane error of 0.12m. The parameters for the IRI

data sets are smaller because the granularity is finer and the noise levels are smaller than with

ETHZ’s data.

The ICP algorithm only computes relative transformations between consecutively acquired point

clouds. To get a view of the fully corrected map (more strictly, of this new augmented odometry,

since no loop closure is being performed at this time) it is necessary to concatenate for each

pose the corresponding correction.

Figures 11 to 22 give an empirical comparison between the different methods. Fig. 11(a) shows

the MSE error for consecutive paired clouds before the ICP is applied to the ETHZ data set

(this is the error induced by odometry only), Fig. 11(b) shows the quadratic error after ICP is
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applied, and Fig. 11(c) shows the error in orientation. The same is shown for the IRI data set in

Fig. 17. The plots of the final revised odometric maps for the various versions of the algorithm

are shown, for the ETHZ data set in Figs. 13-16, and for the IRI data set in Figs. 19-22.

6 Conclusions

In this work we proposed a hierarchical new correspondence algorithm that uses a combined

point-to-plane and point-to-point correspondence search at different levels of granularity. Our

approach is motivated by the work of Biota et al. [10] for the weight rotations must have during

data association. In our implementation, the weighting parameter is set slightly higher than as

reported previously, producing slightly better registration than what can be obtained with an

Euclidean distance only. The setting of the value of parameter L is very sensitive. Its use helps

avoid overshoot and consequently divergence during the minimization step of the ICP filtering

by enlarging artificially the distance between candidate matches for different orientations. An

order of magnitude increase in this parameter to a range between 45 and 70 seemed to work

well for our data sets, in contrast to the original work of Biota with values of L in the order of

3 to 5.

It should be noted however, that in our implementation, the computation of fitting local planar

patches to the entire point cloud increases the time execution by a constant factor with respect

to the point-to-point only strategy.

Data filtering works in most of consecutive cloud pairs in our dataset except for pathological

cases. One way to solve this issue would be to heuristically devise a filter that uses not only

metric but also topological information [29], or to use rejection strategies for maximum distances

[29, 35]. We feel however that this is not a concern since in our future work pathological pairings

will be discarded with the use of advanced stochastic loop closing techniques during SLAM. That

way we will account for these issues in a more systematic and rigorous way.
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(a) Error e
2

k at first iteration

(b) Final error d
2

k

(c) Final theta error

Figure 11: ETHZ data sets, error comparison between cloud pairs for the implemented strategies,
point-to-point(blue), point-to-plane(cyan), hybrid(gree), hybrid L = 50 (red)
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Figure 12: ETHZ, Sampled data set

Figure 13: ETHZ data, point-to-point metric
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Figure 14: ETHZ data, point-to-plane metric

Figure 15: ETHZ data, hybrid metric, euclidean distance
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Figure 16: ETHZ data, hybrid metric, Biota’s metric, L= 50
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(a) Error e
2

k at first iteration

(b) Final error d
2

k

(c) Final theta error

Figure 17: IRI data sets, error comparison between cloud pairs for the implemented strategies,
point-to-point(blue), point-to-plane(cyan), hybrid(gree), hybrid L = 50 (red)
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Figure 18: IRI, Sampled data set

Figure 19: IRI data, point-to-point metric
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Figure 20: IRI, point-to-plane metric

Figure 21: IRI, hybrid metric, euclidean distance
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Figure 22: ETHZ, hybrid metric, Biota’s metric, L= 50
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