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1 Introduction

The motion planning problem has been a subject of active research since the early days of
Robotics [59]. Although it can be stated in simple terms—find a feasible trajectory to move
a robot from a start to a goal location—and despite the significant advances in the field, it is
still an open problem in many respects. The complexity of the problem arises from the many
kinematic and dynamic constraints that have to be taken into account, such as potential collisions
with static or moving objects in the environment, loop-closure constraints, velocity constraints,
singularity avoidance, torque and velocity limits, or energy and time execution bounds, to name
a few. All these constraints are relevant in the factory and home environments in which Robotics
is called to play a fundamental role in the near future.

The complexity of the problem is typically tackled by first relaxing some of the constraints.
For example, while obstacle avoidance is a fundamental issue, the lazy approaches initially disre-
gard it [13]. Other approaches concentrate on geometric [54] and kinematic feasibility [34], which
constitute already challenging issues by themselves. In these approaches, dynamic constraints
such as speed, acceleration, or torque limits are neglected, with the hope that they will be en-
forced in a postprocessing stage [29]. Decoupled approaches, however, may not lead to solutions
satisfying all the constraints. It is not difficult to find situations in which a kinematically-feasible
trajectory becomes unusable because it does not account for the system dynamics (Fig. 1).

Due to their simplicity, decoupled approaches have been predominant so far. Since the late
90s, however, the steady increment in computing power has made it easier to simultaneously
satisfy more and more constraints in the devised planners. With this aim in mind, Donald et al.
[28] defined the term kinodynamic planning to refer to the general problem of finding a motion
that satisfies all kinematic and dynamic constraints, and proposed an initial algorithm for this
problem. Their planner only applied to a point robot subject to velocity and acceleration bounds,
but triggered the quest towards successively more general methods. In subsequent years, a variety
of planners were developed that considered obstacle avoidance, non-holonomic constraints, robot
dynamics, and force, velocity and acceleration limits in an increasingly integrated manner.

(a) (b)

Figure 1: A four-bar pendulum modeling a swing boat ride. A kinematic trajectory (a) and a
trajectory also fulfilling dynamic constraints due to torque limitation (b) may be quite different.
An animation of the trajectory in (b) can be seen in https://goo.gl/S9UKdn.
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Figure 2: From left to right: a parallel robot, a robot hand manipulating an object, a humanoid
picking a box, and a service robot that has to keep a tray horizontally.

As opposed to path planners, which only compute a path in configuration space, kinodynamic
planners obtain a time-parametric trajectory in the state space—the set of all position-velocity
pairs of the robot. This fact complicates the planning of motions substantially, as it doubles
the dimension of the search space in which the planning has to be solved. Even so, existing
kinodynamic planners are quite generic and scale well with the problem dimension. The vast
majority of such planners, however, have an important limitation: they assume that the state
space is globally parametrizable, i.e., that each state can be represented by means of independent
generalized coordinates. While parametric state spaces often arise in robotics, for example in
robots with tree topology moving in free space, in practice, kinematic constraints may appear
that relate the state space coordinates. This happens in many robotic devices, like parallel
manipulators, robots in contact with objects or with the environment, or when virtual geometric
constraints are needed to fulfill a specific task (Fig. 2). In these cases, the robotic system is
said to be constrained, as its state space becomes a nonlinear manifold implicitly-defined by
the kinematic equations to be satisfied. As we shall see, this fact hinders the application of
most motion planning approaches because, then, the state space is not globally parametrizable,
simulation of the robot requires the use of differential algebraic equations, instead of ordinary
differential equations, and singularities may arise that complicate such simulation. It is probably
for these reasons that a mature kinodynamic planner for constrained systems has not been
developed to date. The purpose of this PhD. work is, precisely, to help filling this gap to the
largest possible extent.

2 Objectives

The goal of this thesis is to provide reliable algorithms for solving the kinodynamic motion
planning problem on constrained robotic systems. Given a kinematic and dynamic model of
the system, and a geometric model of the environment, this problem consists in computing the
required force inputs needed to move a robot between two prescribed states, while respecting the
following constraints:

• Kinematic constraints which are those only involving position and velocity coordinates
of the mechanism. These include constraints due to sliding and rolling contacts between
bodies, closed kinematic loops inherent to the robot structure or to the task to be executed,
collision avoidance, and joint limits.
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• Dynamic constraints which are those involving position, velocity and acceleration coor-
dinates, and the forces acting on the system. These correspond to the equations of motion
of the robot, limits on the actuator or constraint forces, or existing velocity and acceleration
bounds.

Although solutions to the kinodynamic planning problem have been given in the past, to the best
of our knowledge, no satisfactory approach has been given for constrained systems whose state
space is not globally parametrizable. Therefore, the kinodynamic planning problem remains
open for the class of systems herein considered.

3 Scope and Assumptions

For the purpose of this work, a robotic system will be a multibody system composed of rigid
bodies and lower-pair joints, with some of the joints being actuated. We shall restrict our
attention to constrained robotic systems, i.e., those for which their state space is implicitly
defined by a system of kinematic constraints involving position and velocity variables. Such
constraints can reflect physical joints, contacts, closed kinematic chains, or virtual geometric
constraints imposed by the task to be performed. In any case, all of these constraints will be
considered to be permanent, as opposed to intermittent constraints that arise, for example, when
the robot makes or breaks contact with the ground. Thus, nonsmooth phenomena due to impact
dynamics will not play a role in our study.

Our main focus will be on fully-actuated robots, i.e., those with as many actuators as degrees
of freedom to be controlled, but the resulting methods should also be applicable to overactuated
or underactuated robots in principle. In most cases, the actuator forces will be limited to a
prescribed range and limits may also be imposed in internal constraint forces. While the former
account for limited actuation capacity, the latter are used to guarantee the materials’ resistance,
or the proper functioning of the robot.

The entire approach will be model-based. We shall assume that proper models of the robot
and its environment are available. This implies that the robot dimensions and dynamic pa-
rameters, as well as the geometry and location of all obstacles, will be known with sufficient
accuracy. Thus, the problems of system identification and calibration will be out of the scope of
our research.

The goal of the planner will be to compute actuator forces able to bring the robotic system
from a start to a goal location. The output of the planner will be a time-parametric description
of such forces and its resulting state space trajectory, which should respect all kinematic and
dynamic constraints imposed by the problem. The development of controllers that might be
necessary to finally execute the planned trajectory will also be beyond the research focus of this
work.

The planner algorithm should satisfy the following requirements. First, it should find a
trajectory whenever one exists, and enough computing time is available. Second, the trajectory
should be reasonably smooth to allow a fine control during its execution. Finally, the planner
should implement mechanisms to reduce the cost of the trajectory to the largest possible extent,
either in terms of time spent or energy consumed by the robot.
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4 Expected Contributions

This Ph.D. work seeks to contribute to the general understanding on how the motions of con-
strained systems can be computed, simulated, or planned in an efficient and reliable way. The
main contribution of this research will be a kinodynamic planner for constrained robotic sys-
tems. The resulting algorithms will be implemented and integrated in the open source CUIK
suite library [78].

The availability of such a planner would allow a robot to automatically convert high-level
specifications of a task into low-level descriptions on how to achieve the task. This planner would
mainly find applications in the following domains:

• In Robotics, the planner could be used to synthesize a nominal trajectory for constrained
systems, such as closed-chain manipulators, non-holonomic robots, or humanoids. This is
crucial in tasks that are non-repetitive, where a different trajectory is needed for every
scenario, for instance, in medical surgery, search-and-rescue operations, or ocean and space
exploration. In these contexts, the planner could be used to find a reference trajectory to
maneuver a robot around obstacles. This trajectory could be latter executed and stabilized
in real-time by using a feedback policy. Moreover, planner trajectories could be used to
evaluate the robot design in simulation in order to make sure that it performs properly
in different scenarios. In this way, the time and cost expenses of prototyping could be
reduced. For example, the planner could conclude that a grasping device is not powerful
enough to move a large object, thereby determining that a better design is needed.

• In the game and movie industries, the obtained trajectories could be used to automate
the motion of virtual characters, while providing physical realism. For example, a game
developer could program a task at a higher level, and the planner would automatically
determine the movement of an animated character in an intelligent way. This also becomes
useful in computer graphics, for instance, when hundreds of digital actors in a movie should
move in an scenario with obstacles. The planner would avoid the time-consuming task of
explicitly defining a motion for each actor.

5 Problem Formalization

The kinodynamic planning problem typically takes place in the state space of the robot, i.e., the
set X of kinematically-valid states x = (q, q̇), where q is a vector of nq generalized coordinates
describing the configuration of the robot, and q̇ is the time derivative of q, which describes
its velocity. The coordinates in q may be independent or not. In the former case, any pair
x = (q, q̇) ∈ R2nq is kinematically valid, and X becomes parametrically defined. The latter case
is more complex. The configuration space (C-space) of the robot is the set C of points q that
satisfy a system of ne nonlinear equations

Φ(q) = 0 (1)

encoding, e.g., joint assembly, geometric, or contact constraints, either inherent to the robot
design or necessary for task execution. The constraints in Eq. (1) are said to be holonomic
constraints and only depend on position variables. By differentiating Eq. (1), the valid values of
q̇ are those that fulfill

Φq(q) q̇ = 0, (2)

where Φq = ∂Φ/∂q. Likewise, the robot may also be subject to a system of nh nonholonomic
constraints

A(q)q̇ = 0, (3)
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which are velocity constraints that cannot be integrated, i.e., they cannot be expressed as a
position constraint like Eq. (1). The consequence of this property is that a nonholonomic robot
has more degrees of freedom in position than in velocity. Eqs. (2) and (3) can be combined to
form the velocity constraint [

Φq(q)
A(q)

]
q̇ = B(q)q̇ = 0, (4)

where B(q) is an (ne + nh) × nq matrix, which, under mild conditions, can be assumed to be
full rank.

Let F (x) = 0 denote the system formed by Eqs. (1) and (4). Then, the state space X of the
constrained system becomes a nonlinear manifold of dimension dX = 2(nq − ne) − nh defined
implicitly as

X = {x : F (x) = 0}. (5)

Any motion planned in X must also obey the dynamic equations of the robot, which arise from
considering the forces and physical laws that determine the system movement. These equations
can be written in the form

ẋ = g(x,u), (6)

where g(x,u) is an appropriate differentiable function, and u is a nu-vector of actuator forces
subject to lie in a bounded subset U ⊂ Rnu . For each value of u, Eq. (6) defines a vector field
over X , which can be used to integrate the robot motion forward in time, using proper numerical
methods.

In order to obtain Eq. (6), constrained systems are usually modeled with the multiplier form
of the Euler-Lagrange equations [32]. First the systems are treated as unconstrained systems
by cutting their kinematic loops, and then the loop closure constraints are enforced by using
Lagrange multipliers. The dynamic equations then take the form

d

dt

∂K

∂q̇
− ∂K

∂q
+

∂U

∂q
+BTλ = τ , (7)

where λ is a vector of ne + nh Lagrange multipliers, τ is the generalized force corresponding
to the non-conservative forces applied on the system, and K and U are the expressions of the
kinetic and potential energies of the robot.

The kinetic energy of the robot can always be defined compactly as a quadratic function of
q̇, that is

K =
1

2
q̇TM(q)q̇, (8)

where M(q) is the so-called mass matrix, which is always symmetric and positive definite. The
potential energy U = U(q) is independent of q̇. These properties allow Eq. (7) to be written in
the form

M(q)q̈ +C(q, q̇) +G(q) +BTλ = τ , (9)

where G(q) is a vector of conservative forces (e.g. gravity or spring forces) given by

G(q) =
∂U

∂q
, (10)

and C(q, q̇) is a vector corresponding to Coriolis and centrifugal forces, which is given by

C(q, q̇) = (Mqq̇)q̇ − 1

2
q̇TMqq̇. (11)
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Since Eq. (9) is a system of nq equations in nq + (ne + nh) unknowns (the values of q̈ and λ),
we need additional equations to be able to solve for q̈. These can be obtained by differentiating
Eq. (4), which yields

Bq̈ − ξ = 0, (12)

where ξ = −(Bqq̇)q̇. Eqs. (9) and (12) can then be written as[
M(q) B>

B 0

] [
q̈
λ

]
=

[
τ −G(q)−C(q, q̇)

ξ

]
. (13)

Clearly, if B is full rank, the matrix on the left-hand side of Eq. (13) is invertible, and thus we
can write

q̈ = f(q, q̇,u) =
[
Inq

0
] [M(q) B>

B 0

]−1 [
τ −G(q)−C(q, q̇)

ξ

]
. (14)

If B is not full rank at the given x, we say that x is a state-space singularity. At such a point,
it is impossible to write Eq. (13) into the form of Eq. (14). It is clear, then, that state-space
singularities should be avoided if Eq. (13) is to be solved during the planning process. Fortunately,
state-space singularities are nongeneric phenomena that can be avoided by judicious mechanical
design [12], or through the addition of singularity-avoidance constraints in Eq. (1) [11].

To obtain Eq. (6), we finally transform Eq. (14) into a first-order ordinary differential equation
using the change of variables q̇ = v, which yields

ẋ =

[
q̇
v̇

]
=

[
v

f(q,v,u)

]
= g(x,u). (15)

Since in practice the actuator forces are limited, u is always constrained to take values in some
bounded subset U of Rnu , which restricts the range of possible state velocities ẋ = g(x,u) at
each x ∈ X . During its motion, moreover, the robot cannot incur in collisions with itself or
with the environment, so that the feasible states x are those lying in a subset Xfeas ⊆ X of
non-collision states, where position, velocities, and constraint forces are within given bounds.

With the previous definitions, the planning problem we confront can be phrased as follows.
Given two states of Xfeas, xs and xg, find an action trajectory u = u(t) ∈ U such that:

• The system trajectory x = x(t) determined by Eqs. (1), (4) and (6) for x(0) = xs, fulfills
x(tf ) = xg for some time tf > 0, and x(t) ∈ Xfeas for all t ∈ [0, tf ].

• x(t) is once-differentiable at least, which implies that the computed trajectory will be
smooth in position and velocity, and continuous in acceleration.

• The additive cost of executing the trajectory

C(x(0),u(t)) =

∫ tf

0

c(x(t),u(t))dt (16)

is, at least, locally optimal for some given instantaneous cost function c(x(t),u(t)).

Note that the previous problem can be considered as a full motion planning problem, as opposed
to a path planning problem that only asks for a connecting curve in the C-space, without reference
to the dynamics of the robot. Following [28, 63] we shall use the term kinodynamic planning to
refer to such a planning problem. Note however that, contrary to [28, 63] we allow the presence
of Eqs. (1) and (4) in the problem, which makes it more general and challenging at the same
time.
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6 State of the Art

This section reviews the main kinodynamic planning approaches developed to date. Along the
way, we shall see the strengths and weaknesses of the various methods, justifying the choice
of approach in our PhD work (Sec. 6.1). Since motion simulation is a key ingredient of many
planners, we shall also devote some attention to survey relevant results in this field (Sec. 6.2).

6.1 Kinodynamic Planning

Existing strategies for kinodynamic planning can be grouped into decoupled approaches, which
search for a C-space path and then design a dynamic trajectory along this path; and direct
approaches, which search for such a trajectory over the state space.

6.1.1 Decoupled Planning

The bulk of such methods concentrate on solving the path planning problem, which aims to find
a collision-free path. For example, algebraic approaches, like those based on silhouettes [19] or
cell decompositions [15], are complete methods, i.e., they provide a path if one exists and show
failure, otherwise. The former define a roadmap of the C-space, and the latter divide this space
into collision-free cells. However, both approaches can only deal with low-dimensional problems.
Approximate cell decomposition methods [59] only partially alleviate this issue.

Potential fields have better scalability [55]. They follow an attractive potential towards the
goal, while avoiding repulsive potentials from the obstacles. However, they suffer from falling
into local minima. This issue is addressed by the randomized potential planner proposed in [2],
where random walks are used to escape from such minima. Nonetheless, potential field methods
require C-space representations of the obstacles or, at least, a metric to measure the distance
from the robot to the obstacles, which are not easy to obtain in general.

Sampling-based methods arise as an alternative, since they only require a method to check
whether a sampled configuration is in collision, and not the actual distance to the obstacles.
Such methods can cope with high-dimensional problems and are probabilistically complete, i.e.,
they guarantee to find a feasible solution, if one exists and sufficient computing time is available.
The two most popular methods among them are the probabilistic roadmap (PRM) [54] and the
rapidly-exploring random tree (RRT) [62] methods. The PRM method takes random samples
from the C-space and connects them to form a roadmap. Then, the start and goal configurations
are added to this roadmap and a graph search algorithm, such as Dijkstra’s [27], is used to
find a path between these configurations. The RRT method incrementally grows a tree rooted
at the start configuration by generating random samples. Each sample is connected to the
nearest configuration in the tree according to a given metric. The selection of this metric plays
a fundamental role in the efficiency of the approach. The search is completed when the tree
reaches the goal. Another relevant tree-based algorithm, the expansive search tree (EST) [42]
is less metric-dependent. For every node, it simply measures the local density of neighboring
nodes, and uses this density to grow the tree towards unsampled areas.

In any case, the complexity of the path planning problem increases when the robot includes
kinematic constraints in the form of Eq. (1), as the valid configurations define a manifold em-
bedded in a given ambient space. Algebraic approaches can deal with such manifolds, but do
not scale properly [15, 19], or are limited to particular robot architectures [85]. Thus, the usual
approach to address these problems is to extend the common sampling-based methods. The per-
formance of those methods heavily relies on being able to uniformly sample the manifold to be
explored. In some robotic systems, distance-based formulations provide global parametrizations
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that can be used to uniformly sample the C-space [35, 90]. However, since global parametriza-
tions are not available in general, alternative sampling strategies have been devised. For example,
Han and Amato [34] sample a subset of joint variables and use inverse kinematics to find values
for the remaining ones. Unfortunately, this strategy is not applicable to all robotic systems and,
although some improvements have been proposed [25], the probability of generating invalid sam-
ples is significant. Also, the non-uniqueness of the solutions for the inverse kinematic problem
and the presence of singularities complicate the approach [31]. Task-space planners [6, 83, 94]
are similar in the sense that they sample a subset of the variables (those related with the end-
effector), although they typically determine values for the remaining variables using numerical
techniques instead of closed kinematic functions. Thus, they share the problems of kinematic-
based approaches regarding the multiple solutions for the non-fixed variables. Another strategy
is to sample in the ambient space and then try to converge to the C-space [5, 26, 87, 93, 95].
However, a uniform distribution of samples in the ambient space does not translate into a uni-
form distribution in the C-space [6]. A better alternative is to sample on an approximation of
the constraint manifold, either learned from a collection of valid samples [39], inferred from the
nodes of an exploration tree [95], or constructed from tangent-space parametrizations [45, 77, 89].
The latter technique provides better approximation and thus, a more uniform sampling and a
more efficient exploration of the manifold.

In the aforementioned approaches, the obtained path is fed into a trajectory generator. Some
methods gradually modify this path to obey the dynamic constraints by using optimization
techniques [58]. Others find a optimal time scaling for the path subject to dynamic con-
straints [10, 66, 71, 82, 86]. These methods have been successfully applied to solve complex
tasks, such as the coordination of mobile robots [69], or the stabilization of legged robots subject
to balance constraints [38, 72]. In any case, decoupled approaches may lead to highly suboptimal
solutions involving difficult maneuvers, or even worse, to dynamically unfeasible solutions. For
instance, the kinematically-feasible path in Fig. 1a becomes unusable because it does not consider
actuator torque limits and cannot be executed in practice. Instead, the dynamically-feasible tra-
jectory in Fig. 1b overcomes this limitation by increasing the momentum of the load in order to
reach the goal after a few oscillations. To synthesize such trajectories, thus, one needs to resort
to direct planning methods.

6.1.2 Direct Planning

Under the direct approach, the kinodynamic planning problem becomes much harder because
kinematic and dynamic constraints are taken into account simultaneously. Moreover, the plan-
ning has to be done in the state space, whose dimension is twice that of the C-space. Existing
techniques can be grouped into dynamic programming, optimization, and sampling-based meth-
ods.

Dynamic programming approaches search for a solution using a grid of cost-to-go values
defined over the state space [1, 23, 67]. The main advantage of this approach is that it can find
an optimal solution at the resolution of the grid. Such an approach, however, does not scale well
to problems with many degrees of freedom, as the size of the grid grows exponentially in the
dimension of the state space.

In contrast, trajectory optimization techniques can be applied to remarkably-complex prob-
lems. They aim to find a trajectory x(t),u(t) that minimizes a cost function—generally the cost
of executing the trajectory—subject to a set of constraints including the system dynamics. Given
an initial condition, xs, and an input trajectory u(t) defined over a finite interval, t ∈ [t0, tf ],

8



the basic problem can be formulated as follows:

minimize
u(t)

∫ tf

t0

c(x(t),u(t))dt

subject to ∀t, ẋ = g(x(t),u(t)),

x(t0) = xs,

x(tf ) = xg.

An advantage of this approach is that constraints of any kind can be added to the previous prob-
lem. Its drawbacks are that efficient methods to solve this optimization problem may converge
to local minima depending on the initial guess employed, and that the problem size becomes
huge for long time horizons or systems with many degrees of freedom [73]. Existing trajectory
optimization techniques can be classified into transcription and collocation methods [7].

• Transcription methods [50, 81, 96] discretize the trajectory into multiple knot points
x1, . . . ,xN ,u1, . . . ,uN , and then enforce the integral of the dynamics between these points
as a constraint:

minimize
x0,...,xN ,u0,...,uN−1

Ts

N−1∑
n=0

c(xn,un)

subject to xn+1 = gd(xn,un) ∀n ∈ [0, N − 1],

x0 = xs,

xN = xg.

Here, Ts is the time increment employed, and gd(·) is a discrete approximation of the
differential equation, either using an Euler method, or any higher-order method if more
accuracy is necessary. Clearly, there is a trade-off between both the number of knot points
and the integration method adopted, and the computational cost required to solve the
resulting optimization problem.

• Collocation methods [36] alleviate this issue by avoiding numerical integration. Both the
input u(t) and state x(t) trajectories are approximated explicitly by means of polynomial
functions. Specifically, u(t) is described by a first-order polynomial defined by the u values
at the knot points, while x(t) is described by an Hermitian spline defined by the x and
ẋ values at such points (ẋ being computed using the dynamics in Eq. (9)). Finally, a
constraint forces the satisfaction of Eq. (9) at the midpoint of the spline, also known as
the collocation point. Thus, the optimization problem can be stated as:

minimize
x0,...,xN ,u0,...,uN−1

Ts

N−1∑
n=0

c(xn,un)

subject to 0 = h(xn,un,xn+1,un+1) ∀n ∈ [0, N − 1],

x0 = xs,

xN = xg,

where h refers to the collocation constraint. This method is powerful enough to be applied
to challenging problems involving humanoids [16, 17, 41] and kinematic constraints [79]. In
particular, in [79] constraints in the form of Eqs. (1) and (2) are enforced at the knot points
and then added to the optimization problem. However, a large set of points are still needed
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to accurately approximate the constraint manifold and the dimension of the optimization
problem increases considerably. Moreover, the kinematic constraints are fulfilled at these
intermediate points but not necessarily along the whole trajectory. In some applications
this might be acceptable, but in our constrained systems it would result in unwanted link
penetrations, disassemblies, or contact losses.

A widely-used alternative to dynamic programming and optimization is to rely on kinody-
namic sampling-based methods [24, 61]. These methods can cope with high-dimensional prob-
lems, and are probabilistically complete. Moreover, recent methods can even generate globally
optimal trajectories [37, 52, 53, 65]. The kinodynamic RRT [63] and EST [43] methods stand
out among them, due to their effectiveness and conceptual simplicity, since they only require
forward motion simulation. However, it is well known that these planners can be inefficient in
certain scenarios [20]. Part of the complexity arises from planning in the state space instead of
in the lower-dimensional C-space [73]. The RRT method is easier to implement, but its main
issue is the disagreement of the metric used to measure the distance between two states, and the
actual cost of moving between such states, which must comply with the vector fields defined by
Eq. (9) [21, 22, 47, 51, 57, 75, 84, 88]. However, none of the previous methods can directly deal
with the implicitly-defined state spaces given by Eq. (5).

6.2 Motion Simulation

Most motion planning approaches heavily rely on the motion simulation of the robotic system.
Such simulation presents a big challenge for constrained systems, as their dynamics need to be
modeled by differential-algebraic equations [70]. The algebraic equations correspond to Eqs. (1)
and (4), which force the robot’s state to lie on a manifold embedded in a higher dimensional
space; and the differential ones reflect the system dynamics in Eq. (9), which, for each u, define
a vector field on such manifold. One might think that the integration of Eq. (9) alone using

Figure 3: A particle moving on a torus (kinematic constraint) under the shown vector field
(dynamic constraint). The trajectory obtained by numerical integration of the vector field (red)
increasingly diverges from the exact trajectory (yellow).
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standard methods for ordinary differential equations would suffice to predict the motion of the
system. However, the solution obtained would easily drift from the algebraic manifold (Fig. 3).
Thus, different strategies should also be considered in order to avoid such drift.

Several techniques have been used to this end [3, 60]. In the popular Baumgarte method
the drift is alleviated with control techniques [4]. The constraint in Eq. (12) is replaced with
a stabilized form, which resembles a damped spring closing the kinematic loop. This method,
though, produces artificial energy dissipation and does not work well for relatively complicated
systems. Moreover, the control parameters are problem-dependent and no general method to
tune them has been given so far [9].

Another way to reduce the drift is to use violation suppression techniques [8, 9, 14]. The
constraint error is reduced at each integration step in the directions orthogonal to the constraint
manifold without altering the system dynamics. This method, however, also produces energy
losses in the system.

A more accurate and totally different approach is given by variational integration meth-
ods [92]. In these methods, the integrator is derived by discretizing the variational formulation
of a given problem rather than the differential equations. The algorithm preserves the energy of
the system and leads to a drift-free integration when simulating constrained systems [49, 64].

The methods relying on local coordinates [33] also produce exact simulations, since they
cancel the drift to machine precision. These methods repeatedly express Eq. (9) using local
parametrizations of X , integrate the equation in the domain of such parametrizations, and then
transform the result back to X . There are several choices for the mentioned parametrizations,
including those based on generalized coordinate partitioning [91], exponential maps [68], or
tangent space projections [80], to name a few. The latter are particularly interesting because
they can be combined with systematic [40] or randomized [45, 46, 76, 77] continuation methods for
exploring higher-dimensional manifolds. We next outline how this combination can be exploited
to develop a kinodynamic planner for constrained systems.

7 Methodology

Our planner will be based on sampling-based techniques, as these generally work well in high-
dimensional problems. Moreover, they can easily cope with the many constraints of the problem,
and with any integration method in principle. In particular, we envisage the extension of the
classic kinodynamic RRT [63] and EST [43] methods to also deal with constrained robotic sys-
tems. To have an idea, we next see how this extension can be achieved with the method in [63].
The extension of [43] would be similar, only requiring adjustments in the expansion heuristics
employed.

The planner in [63] assumes that X is parametrically defined, i.e., that all tuples x = (q, q̇) are
possible in principle. The planner looks for the desired trajectories u(t) and x(t) by constructing
an exploration RRT over X , which in this case is R2nq . The RRT is rooted at xs and it is grown
incrementally towards xg while staying inside Xfeas. Every tree node stores a feasible state
x ∈ Xfeas, and every edge stores the action u ∈ U needed to move between the connected states.
This action is assumed to be constant during the move. The expansion of the RRT proceeds by
applying three steps repeatedly (Fig. 4, top-left). First, a state xrand ∈ X is randomly selected;
then, the RRT state xnear that is closest to xrand is computed according to some metric; finally,
a movement from xnear towards xrand is performed by applying an action u ∈ U during a
fixed time ∆t. The movement from xnear towards xrand is simulated by integrating Eq. (6)
numerically, which yields a new state x that may or may not be in Xfeas. In the former case x
is added to the RRT, and in the latter it is discarded. To test whether x ∈ Xfeas, x is checked
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Figure 4: Left-Top: Extension process of an RRT. Left-Bottom: A kinodynamic planning prob-
lem is often solved faster with a bidirectional RRT. Right: Construction of an RRT on an
implicitly-defined state space manifold.

for collisions by using standard algorithms [48], and the joint positions, velocities and constraint
forces are computed to check whether they stay within bounds. The action u applied is typically
chosen as the one from U that brings the robot closer to xrand. One can either try all possible
values in U (if it is a discrete set) or only those of ns random points on U (if it is continuous).
To force the RRT to extend towards xg, xrand is set to xg once in a while, stopping the whole
process when a RRT leaf is close enough to xg. Usually, however, a solution trajectory can
be found more rapidly if two RRTs respectively rooted at xs and xg are grown simultaneously
towards each other (Fig. 4, left-bottom). The expansion of the tree rooted at xg is based on the
integration of Eq. (6) backward in time.

The previous strategy is easy to implement when X ∈ R2nq , but in our case X is a dX -
dimensional manifold defined by Eqs. (1) and (4). This complicates matters substantially, because
there is no straightforward way to randomly select points x = (q, q̇) satisfying Eqs. (1) and (4),
and the numerical integration of Eq. (6) easily drifts away from X when standard methods for
ordinary differential equations are used. These two issues can be circumvented by constructing
an atlas of X in parallel to the RRT.

An atlas is a collection of charts mapping X entirely, where each chart is a local diffeomor-
phism ψ from an open set P ⊆ RdX of parameters to an open set V ⊂ X (Fig. 4, right). The V
sets can be thought of as partially-overlapping tiles covering X , in such a way that every x ∈ X
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lies in at least one set V . Assuming that an atlas is available, the problem of sampling X boils
down to generating random values y in the P sets, since these values can always be projected
to X using x = ψ(y). Also, the atlas allows the conversion of the vector field defined on X
by Eq. (6) into one in the coordinate spaces P , which permits the integration of Eq. (6) using
local coordinates [80]. As a result, the RRT motions satisfy Eqs. (1) and (4) by construction,
eliminating any drift from X to machine precision.

One could build a full atlas of the implicitly-defined state space and then use its local param-
eterizations to define a kinodynamic RRT. However, the construction of a complete atlas is only
feasible for low-dimensional state spaces. Moreover, only part of the atlas is necessary to solve a
given motion planning problem. Thus, a better alternative is to combine the construction of the
atlas and the expansion of the RRT. In this approach, a partial atlas is used to generate random
states and to add branches to the RRT. The atlas is initialized with two charts covering xs and
xg, respectively (Fig. 4, right). Then, these charts are used to pull the expansion of the RRT,
which in turn adds new charts to the atlas as needed, until xs and xg become connected.

8 Resources and Work Plan

The proposed research is framed within the R&D Project ”RobCab: Control strategies for cable-
driven robot for low-gravity simulation” (DPI2014−57220−C2−2−P ) of the Spanish Ministry
of Science and Innovation, and is partially funded by an FPI grant associated with such project.
The work will be developed at the Institut de Robòtica i Informàtica Industrial, UPC-CSIC, in
Barcelona, with the Kinematics and Robot Design research group [44].

The algorithms in this research should not require computers with special capabilities. In
principle, a standard desktop computer would suffice to solve the motion planning problems
confronted. Furthermore, the algorithm will be accompanied by a proof of concept in simulation
and in a real robot. The robots available at the Kinematics and Robot Design Lab, or the ones
to be constructed within the mentioned research project, will be used to this end.

The work plan for the proposed research is divided into five main tasks, two of which are
subdivided into several subtasks, as described below. The schedule of this plan spans over four
years and is presented in Fig. 5 as a Gantt chart. In this chart, Q1, ..., Q4 stand for the four
quarters of a year, and the work already completed is shown shaded in orange.

Task 1: Literature review

This task entails acquiring a view of the state of the art in kinodynamic motion planning and
simulation. Much effort will be devoted to this task at the beginning the thesis in order to put
our research in context, but literature review will be a continuous process along this Ph.D. work.

Task 2: Planning strategies

This task encompasses the generalization of the main two kinodynamic planning techniques, the
RRT and EST methods, to also deal with constrained robotic systems. The performance of the
resulting methods will be compared in the end.

Task 2.1: Planning based on RRTs

The RRT method will be generalized by incrementally building an atlas of the implicitly-defined
state space X . This atlas can then be used to generate random samples needed to expand the
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exploration tree. Moreover, the dynamics of the constrained system, modeled with differential-
algebraic equations, can be accurately integrated using the atlas [80].

One of the main issues to consider is the metric used to measure the distance between two
states. This is a general issue of all sampling-based kinodynamic planners [84], but in our
context it is harder since the metric should also consider the vector fields defined by the dynamic
constraints, and the curvature of the state space manifold defined by the kinematic equations.

Task 2.2: Planning based on ESTs

The EST method will also be generalized by building an atlas of X . Here, however, we aim to
estimate the local density of neighboring nodes by exploiting such atlas. Then, this density will
be used to expand the tree towards unexplored areas of X . In this task it will also be necessary
to develop heuristics to bias the expansion of the tree towards the goal state [74].

Task 3: Extensions

Several extensions to the sampling-based approaches should be included in order to make the
planner as general as possible.

Task 3.1: Constraint force bounds

This task encompasses the computation of constraint forces in order to ensure they stay within
bounds. This is necessary in applications involving cable-driven robots, for example, in which
the cable tensions should remain positive for a proper operation.

Task 3.2: Virtual constraints

Constraints that are imposed by the task and not by the robot structure will also be treated
by the planner. One can compute the constraint forces that restrict the robot motion to fulfill
virtual constraints. Such forces should then be applied by the actuators.

Task 3.3: Non-holonomic constraints

This task aims to include the non-holonomic constraints in Eq. (3) to the planning problem.
Due to such constraints, the navigation of the state-space manifold is more restricted, which
complicates the planning. Nonetheless, these constraints can be included in Eq. (13) and then,
the motion of the constrained robot can be simulated by using Eq. (14), as long as state-space
singularities are not present or actively avoided.

Task 3.4: Trajectory smoothing

Due to the randomness of all sampling-based methods, the input actions are not continuous and
may lead to nonsmooth solution trajectories. Therefore, this task encompasses the smoothing of
the resulting position, velocity and acceleration trajectories. Such smoothing should be done in
X and thus, we might exploit the constructed atlas to this end.

Task 3.5: Cost reduction

This task aims to reduce the initial cost of the planned trajectory. In this sense, locally op-
timal trajectories could be obtained by feeding the output of the planner into optimization
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approaches [18]. Globally optimal ones could also be generated by considering the trajectory
cost right into the planner [37, 65].

Task 4: Implementation and validation

This task consists in the implementation and validation of the planning algorithms developed
in previous tasks. On this regard, a main task will be the selection of a proper formulation for
the dynamic equations of the robot. The use of the joint variables as generalized coordinates
seems to be a good choice [30], since its facilitates the modeling of actuator forces and friction
effects. Moreover, the use of recursive algorithms to efficiently obtain the various magnitudes
involved in the system dynamics is proving to be effective [30]. Therefore, in this task we expect
to implement these algorithms for the motion simulation in the CUIK Suite [56].

Finally, throughout the different tasks, the planner will be tested in simulation environments.
In the last stages of the thesis, however, it is expected to apply the kinodynamic planner to a real
robot. To this end, a standard controller will be implemented to follow the nominal trajectory
obtained from the planner.

Task 5: Dissertation writing and defence

This last task entails the elaboration of the dissertation and the preparation of its public defence.

9 Publications

The following papers have been prepared to disseminate the research results obtained so far. The
first paper describes the RRT planner in Task 2.1. The second paper is related to Task 3.1, as
it is an application of the RRT planner to cable-driven robots, where it is shown how constraint
forces can be computed to ensure positive tension in the cables.

Conferences

C1. Bordalba, R., Ros, L., and Porta, J.M. Kinodynamic Planning on Constraint Manifolds.
In Robotics: Science and Systems 2017. Submitted.

C2. Bordalba, R., Ros, L., and Porta, J.M. Collision-free Kinodynamic Planning for Cable-
suspended Parallel Robots. In CableCon 2017: Third International Conference on Cable-
Driven Parallel Robots. Submitted.
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[44] Institut de Robòtica i Informàtica Industrial, UPC-CSIC. http://www.iri.upc.edu/.

[45] L. Jaillet and J. M. Porta. Path planning under kinematic constraints by rapidly exploring
manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2013.

[46] L. Jaillet and J.M. Porta. Path planning with loop closure constraints using an atlas-based
RRT. International Symposium on Robotics Research, 2011.

[47] L. Jaillet, J. Hoffman, J. van den Berg, P. Abbeel, J. M. Porta, and K. Goldberg. EG-RRT:
Environment-guided random trees for kinodynamic motion planning with uncertainty and
obstacles. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2646–2652, 2011.
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