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1 Introduction & Motivation

Autonomous Vehicles (AVs) are increasingly gaining attention worldwide. Potential of this tech-
nology is clear and it is predicted that will dramatically change transportation as we know it
today. Autonomous Driving benefits go from reducing contamination in urban areas by im-
proving driving and fuel efficiency to help controlling the traffic flow and parking problems. In
addition, autonomous vehicles will speed up people and freight transportation, as well as increase
the security by reducing the human error.

There has been a strong uprising tendency in the autonomous driving technologies since in
2004 DARPA introduced its first grand challenge. It defied companies and research institutions
to built and run their Autonomous Vehicles to complete a 150 miles circuit, but in that occasion
none of the teams managed to finish the route, completing the best AV only around 7 miles of
the whole trail. Nevertheless, just one year later up to 5 AVs were able to travel the full path.
In 2007 a new Urban Challenge was proposed, composed of realistic every-day-driving scenarios
with traffic rules, blocked routes, fixed and moving obstacles, etc. and in this occasion six teams
managed to finish it. Just observing this fast evolution, we can make an idea of the interest that
autonomous driving is raising.

In the last years the limits of autonomous driving have been pushed due to the fact that
industry, governments and research institutions are investing vast amounts of both human-time
and money. Fully autonomous vehicles have became a reality, as for example by November 2015,
Google’s self-driving cars had driven more than 1.2 million miles (approximately 90 years of
human driving experience).

Technology transfer has also been produced, and research advances are being gradually intro-
duced in current commercial vehicles in the way of Advanced Driver Assistance Systems (ADAS).
Moreover, several companies (Nissan, Mercedes, Volvo, Tesla, etc) have announced their inten-
tions to have, by 2020, different models of commercially viable autonomous vehicles [1]. From
their side, governments are starting to legislate and nowadays some are allowing to test and drive
AVs on their roads (i.e. California since 2012).

1.1 Motivation
Although Autonomous Driving are getting more and more important, this technology is still far
from being mature. Our cities and roads are very unpredictable dynamic environments where
multiple actors such as pedestrians, animals, street furniture or other vehicles coexist together.
In this way, it is needed to provide Autonomous Vehicles with robust perception systems in order
to correctly understand the environment, and therefore being able to interpret what is happening
in the surroundings to act in consequence.

The primary way for an AV to get information from the environment is through a variety
of on-board sensors. Nowadays, new affordable sensors such as automotive radars, multiple-
layer laser-scanners or appearance and depth capturing cameras are coming to market and being
incorporated in mobile robots and vehicles. As a consequence, new sources of information are
available to be used in their perception systems.

Regarding the software development, in the last years significant advances have been done
in the field of Computer Vision, Machine Learning and Mobile Robotics research. Remarkably
are Deep Learning and specifically Convolutional Neural Nsetworks (CNNs) advances, which are
showing promising results. CNNs have supposed an important breakthrough, and its results are
beating the state of the art solutions on problems such as object detection and classification or
semantic segmentation and understanding (even surpassing the human capabilities [2]). Either
being used as a new way for extracting robust features replacing hand-crafted ones, or as an
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end-to-end trainable system, CNNs are of special interest nowadays.
This context motivates us to participate in the research and development of new and robust

Convolutional Neural Network-based algorithms that will perform a key role in the perception
systems of autonomous vehicles, substituting standard computer vision approaches.

Additional motivation for this thesis comes from the European FP7 Cargo Ants project, which
in cooperation with Volvo Trucks (as one of the industrial partners) aims to develop autonomous
trucks that can co-operate in shared workspaces for efficient and safe freight transportation
in main ports and freight terminals. In this way, we aim to test and integrate the developed
advances into these trucks.

2 Objectives

The main objective of this doctoral thesis is to exploit Convolutional Neural Networks capabilities
to efficiently perform scene understanding in the autonomous driving context. We aim to achieve
this high level objective by tackling and combining low level CNN-based features such as optical
flow or per-pixel semantic segmentation. In this way, main objectives in our research are:

• On one hand, we have as objective the extraction of advanced and robust low level geomet-
ric features by using Convolutional Neural Networks. We will primarily focus on obtaining
robust CNN-based optical flow estimations of a scene, as well as per-pixel semantic seg-
mentation. These two low level features will allow us to get dynamic and class knowledge
of the observed environment.
At this level, we will also work on improving performance and generalization of previously
proposed networks by combining synthetic and real data, as well as by performing domain
adaptation with the introduction of specific application knowledge into the network.
Other objective at this low level is to explore methods for performing multimodal feature
integration. In this way, we aim to develop CNN networks that will be able to integrate
the obtained low level features with information from other sensors (such as from RGB
images or sparse laser depth measures).

• On the other hand, we plan to accomplish higher level objectives by exploiting the obtained
low level features. In such manner, we will propose new CNN architectures and strategies
for performing scene understanding. Additionally, we will explore the best way of intro-
ducing specific application knowledge with the intention of making our approach efficient
for autonomous driving.

2.1 Expected Contributions
To accomplish the aforementioned objectives, we will firstly review the state of the art and
provide a comprehensive view of Convolutional Neural Networks.

We will research and develop new CNNs for solving the problems of optical flow estima-
tion, semantic segmentation and object detection. We will go deeply on the CNN capacities to
integrate different sources of low-level features for performing high-level interpretation, so sub-
sequently being able to achieve scene understanding. With this, we expect to provide deeper
knowledge about CNNs as, from a scientific point of view there is still no much knowledge about
its internal behaviour, which sometimes leads the development of better models to a trial and
error heuristic approach.

Furthermore we will generate synthetic but realistic new datasets of urban driving scenarios,
in cooperation with other research groups, to be used for training CNNs. With this new amount
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of information, we expect to contribute on studying the generalization capacities and performance
of CNNs when trained only with synthetic data, as well as its domain adaptation when specific
application knowledge is giving.

During this doctoral research, MATLABr will be used along with the MatConvNet [3] toolbox
making use of GPU computation. We expect to also contribute on the development of new CNN
layers and characteristics for this framework, making them available for the community.

Scientific publications in international journals and international congress communications are
expected to be derived from this doctoral thesis. Some of the work has already been published
and can be found in Section 5.1.

3 State of the Art

In this section we review the state of the art about the different topics related with this doctoral
thesis. Firstly, we will focus our problem by doing a very brief review on classical feature-
based object detection approaches used in computer vision and pattern recognition. Next, we
will show the potential of Deep Learning techniques and Deep Neural Networks, which are
performing stunningly well at solving computer vision problems when conventional approaches
have typically had troubles. Specifically, we will focus our attention in Convolutional Neural
Networks (CNNs) applied for feature extraction (such us optical flow estimation and per-pixel
semantic segmentation) to solve problems as image classification and object detection.

3.1 Classical Object Detection in Computer Vision
Standard methods for classifying or detecting objects in Computer Vision are commonly based
in feature matching, which aims to find sets of pre-learned shape features (descriptors) of the
objects across images. Some descriptors such as SIFT [4] or SURF [5] have been typically
used at low level for locating points of special interest between images [6], [7]. Higher level
features can be extracted with other advanced descriptors like Haar features [8] or Histograms
of Oriented Gradients (HOG) [9], which have shown good performance in human and pedestrian
detection [10], [11], [12] (an important application for autonomous driving situations). Best
descriptors should be scale, rotation and illumination invariant as well as pose and occlusion
aware. This usually involves hand-crafting and personalising them to the application or image
space being used, which reduce its generalization capabilities.

Neural Networks [13] in pattern recognition have historically performed pretty well in situ-
ations where conventional feature-based approaches struggle. They were taken with great opti-
mism in the 1980s, specially after backpropagation was expanded becoming widely known. In a
standard Neural Network any neuron is connected to every other neuron in the adjacent layers,
as can be seen in Figure 1(a). If more neurons are added, the connections will grow exponentially
and the network may suffer from what is called the curse of dimensionality, which supposed a big
problem back in the 80s. The output yq of each hidden neuron is computed as the summation
of each of the weighted inputs wiq · xi plus a bias bq following the equation: y =

∑
i wiq · xi + b.

This means that a different weight and bias value must be computed for each neuron, and the
total number grows as the network gets deeper. In example, for a 28x28 input image, a Neural
Network would have 28x28 = 784 input units, and therefore for each of the hidden neurons on
the first hidden layer, 784 weights and 784 biases values (1568) would need to be computed.

However, due to these dimensionality problems and hardware computing shortcomings, Neu-
ral Networks popularity felt down in the 1990s. Other machine learning techniques emerge
taking Neural Networks popularity, such us Support Vector Machines (SVMs), Boosting meth-
ods and more recently Deformable Part-based Models (DPMs). Combination of HOG or Haar
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(a) Detail of a Classical Neural Network (b) Detail of a Convolutional Neural Network

Figure 1: Differences on the connectivity of standard Neural Networks and Convolutional ones. CNNs exploit
spatial structure of the images by enforcing a local connectivity pattern between units of adjacent layers. In this
way, units from layer m are only activated from a transversal region (through all its features maps) of units of
layer m − 1. Moreover, each feature map on a hidden layer shares the same weights and bias in all its units,
so that they can detect the same kind of features. Thus, the number of learned parameters in comparison with
standard Neural Networks is reduced, allowing faster training and deeper structures.

features with these methods worked pretty well in Object Detection and classification prob-
lems [14], [15], [16] and remained as the state of the art until some years ago.

3.2 Convolutional Neural Networks
In the last years, neural networks have again raised the attention of the research community. More
specifically, Deep Neural Networks are setting all sort of records and defeating other approaches
on many pattern recognition and computer vision problems. The success of these systems comes
from their ability to create powerful object representations without the need to hand design
features. Deep Neural Networks are able to learn both low level image features and high level
abstracted concepts as well as abstract input-output relations given enough training data samples.

A Special family of Neural Networks is Convolutional Neural Networks (CNNs), which are
enjoying nowadays of good popularity. As known today, CNNs come from the late 1970s, and
were heavily used for different detection and classification purposes in the late 1980s and 1990s
[17], [18].

3.2.1 Convolutional Neural Network Distinctive Concepts

The main advantage of CNNs over standard fully connected Neural Networks is that, inherently,
they are able to take into account the local spatial structure of the images. Therefore, they do
not treat far away input image pixels in the same way as those which are close by. Moreover,
CNNs use a special architecture which is particularly well adapted to classification problems,
allowing a faster training and therefore enabling the creation of deeper networks with many
layers. Due to these special characteristics, deep convolutional networks and some close variant
are used nowadays in most algorithms for image recognition.

Convolutional Neural Networks, in the same way as classical Neural Networks are composed
of multiple blocks or layers stacked one after the other in such a way that outputs from one layer
serve as inputs for the following one. In this manner, many of the standard Neural Networks
concepts are applied to CNNs, such as backpropagation, gradient descent, regularization, etc.
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However, CNNs allow us to train deep, many-layers networks by introducing three new ideas
in order to avoid the dimensionality problem, to be: local receptive fields, shared weights, and
pooling.

Local Receptive Fields.
For easily understanding how CNNs work over images it is common to represent its input

layer as height×width arranged units as seen in Figure 1(b), which is different from the vectorial
representation of classical Neural Networks. Convolutional layers input pixels are connected to
the next layer of hidden units through the convolution process, which applies only over a region
of the input map. This means that, instead of making fully connections between all the neurons,
convolutional layers only make connections in a small, localized region of the input image.

Such localized architecture ensures that the learnt filters produce the strongest response to
a spatially local input pattern. Although these filters apply locally, using many hidden layers
leads to non-linear filters that become increasingly global, as they respond to larger regions
of previous layers. Therefore, Convolutional Neural Network are able to create at lower layers
simple representations of small parts of the input, whereas at upper layers generate more abstract
descriptors of larger areas.

Shared Filters and Feature Maps.
In CNNs, a unique set of weights and bias (kernel or filter) is shared across the entire input

field creating a feature map as can be seen in Figure 1(b). This means that all the neurons (or
units) in a given convolutional layer will respond in the same way to the same feature over the
previous layer, for example a vertical edge. This is done because it is highly likely that a learnt
feature would be useful at other places of the image.

The main consequence of sharing these kernels, is that the feature can be detected regardless
its position in the input field, obtaining the translation invariance property that convolutional
neural networks have and that hand-crafted descriptors struggled to get. Still, the described
structure would not be practical for doing robust image recognition, as it can only detect just a
single kind of feature. More than one feature map is needed therefore, enabling to learn more
kernels and obtaining a much more robust network, as it will be detailed in Section 3.2.2.

Another important consequence, is that CNNs are able to reduce dramatically the number of
parameters learnt at each layer in comparison with a fully connected neural network. Following
the previous example of a 28x28 pixels input image and setting a local receptive field of 5x5, the
output of a convolutional hidden layer would have 24x24 units. These units result from moving
23 times the reception field over the whole input image. Nevertheless, in this case the CNN
only need to learn one filter (vector of weights and a bias) for generating a full feature map, so
that 5x5 + 1 = 26 parameters. Given the case that we choose to have for example 20 of those
feature maps in the first CNN hidden level, we would need to learn 26x20 = 520 parameters.
In order to compare, a classical neural network first layer with 20 neurons would require for the
same example 28x28x20 = 15680 weights plus another 20 biases, thus 15700. This substantial
reduction of weights of the CNN, leaves space to create bigger and deeper networks with several
layers.

Pooling.
The last main difference of CNNs with respect to standard neural networks is the existence

of pooling layers. The introduction of the pooling step aims to simplify the information at the
output of the convolutional layers by reducing it.

As the pooling step can be seeing like a special layer having its own entity inside the structure
of a CNN, we will provide a more detailed description of it in Section 3.2.2.
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Figure 2: Depiction of a LeNet model widely used for classification problems. In the first step, a convolutional
layer (C1) is applied to the input with a kernel size of 5x5, producing 6 feature maps of size 28x28. Next,
a 2x2 max-pooling operation (S2) is performed, reducing the size of the feature maps to 14x14. This process
(convolution+pooling) is repeated with the same kernel sizes, but in this occasion creating 16 feature maps in the
convolution layer (C3). The final layers correspond to Fully connected ones and work in a similar way as classical
neural networks do [13]. Finally, for classification problems, it is common to introduce a last layer obtaining
the prediction for the known classes (for example, for classifying hand-written digits this layer would have 10
outputs).

3.2.2 Basic Convolutional Neural Network Structure

One of the earliest and famous Convolutional Neural Networks receives the name of LeNet5 [18],
after one of its authors, Yann LeCun. Since it firstly appeared, several other authors and CNNs
have been based on it, creating great variety of modifications. However, its core structure of
alternating convolutional layers with max-pooling ones has been maintained in most of the new
approaches. A graphical illustration of a simpified LeNet model network is shown in Figure 2,
which will serve as example for detailing CNNs main structure and characteristics later in this
section.

Basically, LeNet consist on an input layer followed by 5 hidden layers and two fully connected
layers at the end performing the final classification. The hidden layers are a sequence of a convo-
lution layer (C1) followed by a max-pooling subsampling layer (S2). This structure is repeated
one more time (C3 and S4). The last hidden layer (C5) corresponds to another convolution
layer that reduce the 3 dimensions of the whole set of feature maps of S4 to a two-dimensional
vector enabling to link to the fully connected layers (F6 and output soft-max layers). Detailed
information of the main structural layers in a CNN is presented next.

The Convolution Layer.
The output feature map of a convolution layer is calculated as:

ax,y = σ

(
b+

∑
f1

∑
f2

wf1,f2 · aj+f1,k+f2

)
where ax,y is the output unit; b is the shared value given to the filter bias; f1 and f2 goes

from 0 respectively to the height and width of the filter used, and thus wf1,f2 are the the learnt
values for the kernel weights; k, j is the top-left corner of the local receptive field in the input
map; aj+f1,k+f2 are the input values under the filter patch (input activation ax,y); and finally σ
is the neural activation function providing the non-linearity.

Kernel size (f1xf2) values vary greatly, usually based on the dataset. For example, for the
MNIST-sized images (28x28) best results are usually obtained with an 5x5 range on the first
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(a) Hyperbolic Tangent (b) Sigmoid Function (c) Rectified Linear

Figure 3: Commonly used activation functions.

layer. Natural image datasets (often with hundreds of pixels in each dimension) tend to use
larger first-layer filters of shape 12x12 or 15x15.

The purpose of the activation function is to introduce non-linearity into the network, so that
non linear models can be learnt. Commonly used activation functions are the hyperbolic tangent
(tanh) function, or the sigmoid one which can be seen in Figure 3(a) and 3(b) respectively.
However, a new activation function called the rectifier has been recently adopted, represented
in Figure 3(c). Units using this kind of non-linearity are commonly known as Rectified Linear
Units (ReLU), and its outputs are calculated as f(x) = max(0, w ·x+b), being w and b a defined
weight and bias respectively.

The main advantages and drawbacks of using ReLU units have been studied in several articles
such as [19]. Other works as [20] or [21], have found that the ReLUs improve considerable the
performance of CNNs for image recognition. This is partly because ReLU units require only com-
parison, addition and multiplication operations, so that it allows for faster and effective training
of deep neural architectures on large and complex datasets. Another important advantage is that
ReLU units are able to provide a sparse activation on initializing for a network (as only about
the 50% of the units would be activated with non-zero output).

The Pooling Layer
As stated in the previous section, one of the convolutional neural networks special concepts

is pooling. Pooling layers were designed as a form of non-linear downsampling for progressively
reducing the spatial size of the feature maps and hence, reducing the amount of parameters
and computation in the network. Moreover, the pooling operation provides a form of translation
invariance. Intuition says that once a feature has been found, its exact location is not as important
as its rough location relative to other features, so in this way we are allowed to keep only the
most activated unit.

There exist several pooling procedures, but the most common one is max-pooling. In max-
pooling, each pooling unit simply outputs the maximum activation within a lxl input region,
being l a integer value (typically 2). Other advanced pooling techniques exist. One example is
L2 pooling, which instead of the maximum activation, takes the square root of the sum of the
squares of the activations on the defined pooling region. Another recent example is Fractional
Pooling [22], which is having quite good results by smoothing the rapid reduction in spacial size
of max-pooling layers allowing to a special lxl region, where l can be a non-integer value.

The Upper Layers
Convolutional Neural Networks perform the high-level reasoning in the upper layers via fully
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connected layers. The units in a fully connected layer are connected to all the feature maps in the
previous layer, as seen in regular Neural Networks between neurons. Therefore, their activations
can be easily computed with a matrix multiplication followed by a bias offset.

The Upper layers also include the loss layer, normally the last one of the network. It specifies
how the network training penalizes the deviation between the predicted values and the true ones.
Depending on the task various loss functions may be used, being the most common Soft-max,
which predicts a single class between a set of mutually exclusive ones. Other loss functions
exist such as sigmoid cross-entropy loss, or euclidean loss. The former is commonly used for
predicting n independent classes by probability values in the range of [0,1]. The latter is most
used for performing logistic regression to real-valued labels in the [-inf,inf] interval.

3.2.3 Rise of Convolutional Neural Networks

In the past few years, CNNs have experimented a huge revival after being applied very successfully
to solve extremely difficult computer vision problems. From year 2011 there have been numerous
breakthroughs achieved by these networks, showing that an important transition is taken place
in the research community. Several factors are responsible of this new success of CNNs.

Firstly, there have been new advances providing much faster developing and training tools for
Convolutional Neural Networks. Powerful hardware units for GPU computation has come along
with new software libraries (e.g. CUDA and CuDNN ) enabling the easy exploitation of this
hardware. In this way, several frameworks have also been created providing researchers with fast
and easier ways of developing and training CNNs, as for example Caffe, Torch, or MatConvNet.

Secondly, the availability of new labelled databases providing extensive training sets with
millions of samples allows to train models more exhaustively. Within this datasets, several
competitions are carried out for different tasks like object classification and detection in which
CNNs are surpassing by far standard computer vision approaches. A brief summary of some
of the best known datasets and competitions that have contributed to the CNNs expansion are
presented in Table 1.

Finally, the use of better regularization and normalization techniques are reducing the ten-
dency of the networks to overfit. An example of the first ones is Dropout ( [23], [24]), which
consists on removing individual neurons at random during the training step. It reduces com-
plex co-adaptations of neurons, forcing them to learn more robust features without depending
on other units, as they suddenly may will not connected. In CNNs, Dropout was firstly used
in [25] and is applied only in the fully connected layers because the convolutional layers already
provide protection against overfiting by sharing the wheights, as commented in Section 3.2.1.
An example of the second group, comes with batch normalization [26], which allows to use a
higher learning rate and therefore to train faster (by normalizing the network parameters with
each mini-batch) and therefore reduce the tendency to overfit.

3.3 Convolutional Neural Networks Models
Convolutional Neural Networks ability for building multiple layers of abstracted features seems
to be fundamental to sense and understand our world, which is making CNNs a very hot research
topic.

Many architectures are recently been proposed for different computer vision purposes such as
feature extraction, object recognition and detection, or scene understanding. However, some of
them are only slightly modifications or tweaked versions of other well known networks, making
it difficult to track them or to keep an updated list.

Nevertheless, we present here a brief summary of the most famous CNNs architectures that
have served as base for many other authors, along with its main characteristics and achievements:
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Recognition and Classification Commonly used DataBases
Name About Classes Num. Images Image Size
MNIST Handwritten digits in gray 10 60K+10K 28x28
CIFAR-10 Objects in Color 10 50K+10K 32x32
CIFAR-100 Objects in Color 100 50K+10K 32x32
STL-10 Objects in Color 10 50K+80K 96x96
SVHN Street View House Numbers 10 >73K+>26K 32x32
ILSVRC High-res. Object images 1000 1.2M+150K ∼ 482x415

Object Detection Commonly used DataBases
Name About Classes Tr. Images ROIs
PASCAL VOC Objects in real scenes 20 11530 27450
Caltech Ped. Pedestrians from driven vehicle 1 250K 350K/2300
TUD Ped. Pedestrians + movement info. 1 1092 1776
KITTI Real Driving Environment 3 7481 +7518 80.256

Table 1: Most used datasets for object recognition and detection. In the number of images field, the first value
corresponds to the training set whereas the second to the test set. The STL-10 dataset, provides an extra
100K set of unlabelled images for unsupervised learning. The SVHN dataset provides also original images with
bounding boxes (for detection purposes) and include >531K extra labelled, somewhat less difficult samples for
extra training data. PASCAL Visual Object Recognition was a competition that run from 2005 to 2012 mainly
for object detection and segmentation, after it, ILSVRC has also included object detection tests. The Caltech
dataset differentiate between 2300 unique pedestrians. The TUD Pedestrians dataset include also information
about movement and optical flow. Kitti dataset is a complete dataset with several options, but here we only refer
to the object detection one, which focus on Car, Pedestrian and Cyclist classes.

• LeNet. Developed by Yann LeCun in the 1990s, it is the reference network in the field, as
previously described in Section 3.2.2. It was the first successful application of Convolutional
Networks to real computer vision problems, mainly to read zip codes and digits between
others.

• AlexNet. Developed by Alex Krizhevsky et al, AlexNet [25] represented the real break-
through of Convolutional Networks in Computer Vision. It was submitted to the ILSVRC
challenge in 2012, winning it with a top-5 accuracy of 84.7% which was by far better than
the 73.8% achieved by the second-best contest entry. AlexNet has a basic architecture
similar to the LeNet one, but is deeper and bigger. It contains about 650K neurons, 60M
parameters and 630M connections. Its main difference is that uses Convolutional Layers
stacked on top of each other, which differs from previously common approaches that has
a single convolution layer immediately followed by a pooling layer. It contains 7 hidden
layers, the first 5 being convolutional (some with max-pooling) and the next 2 layers be-
ing fully connected. On top of it, has a 1000-unit soft-max output layer as the output
classification for the 1000 image classes of the ILSVRC.

• GoogLeNet. Another noteworthy CNN architecture can be found at [27] under the name
of Inception. A particular implementation of it, GoogLeNet, won the object detection task
of the ILSVRC 2014, obtaining an incredible top-5 accuracy of 93.33%. Its main contri-
bution is the development of the Inception Modules, inspired by the Network-in-Network
work in [28]. This approach dramatically reduced the number of parameters in the network
(4M , compared to AlexNet with 60M), allowing to have deeper structures. GoogLeNet
contains 22 parametrized layers, and combines the use of standard convolution+pooling
layers with their inception modules. Moreover, concerned about the vanishing gradient
problem 1, it add auxiliary classifiers connected to some intermediate layers to encourage

1A problem found when training neural networks with gradient-based methods and backpropagation. As
traditional activation functions such as tanh or sigmoid have gradients in low ranges (-1, 1) or (0, 1), and
backpropagation computes gradients by the chain rule (multiplying n of these small numbers to compute gradients
of the "front" layers in an n-layer network), the gradient decreases exponentially with n and the front layers are
trained very slowly.
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Figure 4: Examples of objects detected and classified with CNNs. Image extracted from the Faster R-CNNs [30]
work of Shaoqing et al.

discrimination at lower stages, increase the gradient propagated and provide additional
regularization.

• VGGNet. The VGGNet [29] created by Simonyan and Zisserman presents a very deep
although very simple and homogeneous structure. It obtained the second-best position in
ILSVRC 2014 with a total of 16 convolution layers plus fully connected layers at the end.
Simplicity is provided by applying from the beginning to the end blocks of 2 convolutions
and one max-pooling layer. Their main contribution was to show that the depth is a critical
component for good performance in a CNN. Despite its lower classification performance
(in comparison with GoogLeNet), it has been found that the VGGNet features outperform
those of their rivals in multiple transfer learning tasks. This generalization capacity has
made of VGGNet to be one of the most preferred choices in the community when extracting
CNN features from images. However, a drawback of VGGNet is that it is more expensive to
evaluate and uses a lot more memory and parameters, as it has around 140M parameters).

As deep architectures, CNNs have the need of lot of memory which sometimes is a big
inconvenience working with GPUs. A rough estimation of the size of a network can be done
knowing the number of parameters used, multiplying those by 4 (or 8 in double precision) and
then dividing consecutively by 1024 to get the size in KB, MB or GB. In this way for double
precision, an AlexNet model would require about 450MB of memory, GoogLeNet only around
30MB and VGGNet around 1GB.

3.3.1 Convolutional Neural Networks for Object Recognition and Detection

One of the most direct uses of CNNs is to classify and detect objects in images. This last
problem, is a more challenging one (as shown in Figure 4), and requires to detect in the same
image several objects instances that can vary on size and pose, or even be occluded. Some of
the datasets, challenges and competitions summarized in Table 1 (as well as released pretrained
models of the previously commented CNNs) have contributed to the development of algorithms
and other CNNs architectures able to solve the object detection problem.

Initial approaches use well known multiscale and sliding window methods in combination
with CNNs-extracted features and a final classifier. However, Sermanet et al showed in their
Overfeat work ( [31]) that end-to-end trained CNN architectures can also we designed to produce
an integrated approach to object detection, recognition and localization. They explored CNN
special characteristics of location invariance and weights sharing to develop an inherently efficient
sliding window approach. They also introduce a novel method that learn to predict object
boundaries to create bounding boxes, all in the same CNN architecture.

On the other hand, the recent advancement of region proposal methods (e.g, [32]) have
established new successful CNNs architectures. An important one, was proposed by Girshick et
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al in [33], as what is called region-based CNNs (R-CNNs). It starts with a pre-processing region
proposal step that outputs 2000 proposals. Next, it uses a pre-trained AlexNet classification
network to extract a 4096 feature vector for each of the regions. Finally, it classifies each region
with a category-specific linear SVMs and with the results they fine tune the CNN end-to-end for
detection.

Further works on Object Detection with CNNs has focus mainly on reducing the expensive
computations of R-CNNs, which has been achieved succesfully by sharing the convolutions across
proposals [34], [35], [30]. The SPPnet work of He et al [35] speeds up R-CNNs by moving the
proposals warping and its interpretation after the last convolutional layer. On the contrary, work
done by Shaoqing et al in [30], directly propose a fully convolutional network able to generate
by itself the region proposals by adding two additional convolutional layers to the network.

3.3.2 Convolutional Neural Networks for Feature Extraction

As stated in the previous sections CNNs are able to obtain robust image features, from low
level layers detecting for example edges, to more sophisticated structures and abstract concepts
at higher layers. This, in combination with its translation invariance property makes CNNs
good candidates to act as simple substitute for standard hand-crafted descriptors described in
Section 3.1. Recent work of Yosinski et al [36] helps on this topic with a studio about feature
transferability in CNNs, this is, using features obtained from a pre-trained network as descriptors
for other utilities. Moreover, Zeiler et al [37] address the problem of interpreting what the kernels
of a CNNs learn at the different layers.

The idea of using CNNs as direct robust feature generators has been harnessed by several
authors for object detection or patch matching by including convolutional layers in their algo-
rithms pipeline, such for example the works of [33] or [38] respectively. Besides, other authors
like Simo-Serra et al [39] use CNNs (specifically siamese networks), to create a 128-D descriptor
that can be used directly as a drop-in substitute for SIFT. Its descriptor is demonstrated to be
efficient and generalize well against scaling and rotation, perspective transformation, non-rigid
deformation, and illumination changes.

Other recent CNNs-based approaches, are more interested in per-pixel prediction problems,
being applied for example to semantic segmentation or Optical Flow. From these, useful low
level information can be obtained to be used at further scene understanding.

Semantic Segmentation with CNNs
Semantic segmentation has been a long-time known problem in Computer Vision, aiming

to assign each of the pixels of an image to a set of pre-defined object (semantic) categories as
can be seen in Figure 5. Segmentation algorithms typically have three main components; one
modelling the local appearance of objects (clustering image pixels into homogeneous regions),
other taking into account and enforcing the local consistency of the labels between locations
(grouping the regions into semantically meaningful parts), and the last one enforcing global
consistency at region or image level (formulating the problem as a minimization problem over
the space of labelings/segmentations). These separated components are commonly integrated
into unified probabilistic methods, e.g. Conditional Random Fields (CRF) [40], obtaining good
performances. But these integrated models comes with a high computational cost.

Semantic segmentation problem has been recently tackled with CNNs. In this way, several
works exist, as for example [41], [42], [43]. Remarkably is the work of Long et al in [43], which
proposed Fully Convolutional Networks (FCN) as special CNNs able to take input images of
any size and produce correspondingly-sized outputs with efficient inference and learning. In
this case, they showed that FCNs trained end-to-end, pixel-to-pixel on semantic segmentation
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Figure 5: Ground truth examplesof the Kitti Dataset for semantic segmentation.

Figure 6: Ground truth examples of the Kitti Dataset for optical flow estimation.

exceeded without further requirements the state of the art algorithms.
Another noteworthy work is [44], which aims to solve the poor pixel-feature location at the

high layers of a CNN to produce semantically accurate predictions and detailed segmentation
maps. They manage to do this, while being computationally efficient, by combining responses
from the CNNs with a fully connected Conditional Random Field in their DeepLab system. Very
recent approaches like [45], try to produce delineated outputs on semantic segmentation, by
introducing a new end-to-end form of CNN able to combine internally CNNs and CRF. They
called this network CRF-RNN, and can be plugged as a part of a CNN to obtain a new deep
network with the desired properties of both CNNs and CRFs.

Optical Flow Estimation with CNNs
As a method to estimate the motion on a scene, optical flow requires to find correspondences

between two input images, not only by means of per-pixel localization, but also by matching image
feature representations. Figure 6 shows some Optical Flow examples extracted from the Kitti
dataset. Many challenges arise for optical flow problem in realistic dynamic environments, such
as outliers (occlusions, motion discontinuities), illumination changes, and large displacements.
However, those could also be addressed with CNNs as seen before.

Optical flow estimation, has been dominated by variational approaches since the work of
Horn and Schunck [46]. Further research has focused mainly in alleviating the drawbacks of the
method, introducing different improvements, [47], [48], [49], or managing large displacements [50].

Deep learning techniques were introduced in optical flow estimation by Weinzaepfel et al in
their DeepFlow [51]. They realised that current descriptor matching approaches are based on
rigid descriptors, creating implicit rigid motion hypothesis that do not fit for fast neither large
motions. As a solution, they propose to firstly extract descriptors in non-rigid local frames by
means of sparse convolutions and max-pooling, for later on performing dense matching in all
image regions. They showed that their approach resulted to a significant performance boost on
MPI-Sintel [52] and KITTI [53] optical flow datasets.
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Per contra, there has been little work on fully estimating optical flow by using Convolutional
Neural Networks. A good approach worth to mention is the Zbontar and LeCun [54] work, which
train a CNN with a Siamese architecture that is able to predict similarity between image patches.

However, a recent method termed FlowNet and presented by Fischer et al in [55] creates an
end-to-end CNN architecture able to learn to estimate horizontal and vertical flow fields directly
from the image pairs. The authors proposed two different networks for solving the problem
without requiring any handcrafted method for aggregation, matching or interpolation. The
initial one is a simple end-to-end CNN architecture based on convolutional layers with an input
of six channels from the two images. They also proposed a second approach with two different
convolutional networks image inputs merged by a new correlation layer. This layer aims to
help the network in the pixel matching process by performing multiplicative patch comparisons
between the two feature maps obtained. The correlation operation is identical to a convolution
operation, but instead of convolving data with a learnt filter, it convolves data with other data
(so no weights are needed). As a final step, both networks perform a refinement process by means
of upconvolutional [56] 2 layers merged with the coarse predictions. In addition, they perform
an optional variational approach in order to do a final refinement of the network predictions,
obtaining results comparable to state of the art algorithms.

3.4 Scene Understanding
Scene understanding aims to provide computers with human capabilities for accurately and com-
prehensively recognize and understand our complex visual world. It is a core problem of high
level computer vision aiming to solve questions such as What is happening?, which elements are
participating in the action?, what should I do next?. To solve these questions a global under-
standing of the environment is needed. As humans we are able to understand scenes at a whole by
localizing and recognizing different objects (object classification and detection), delineating their
limits (semantic segmentation), and/or knowing the dynamics and movements (optical-flow). In
such manner, scene understanding can be seen as a wrapping of all the previously commented
low level features extracted, to perform a complete interpretation of the scene.

As we have seen in previous sections, these computer vision problems have been commonly
explored independently. However, they could benefit from a jointly approach, as all of them are
very related at high level. For example, if we know the objects under studio, segmentation could
be done easier with the prior awareness of the shape; we could better detect and localize objects
if we know the semantic regions - boats on water, cars on roads; movement estimation would be
more accurate if the object is know; etc.

Several works have been done in this line with holistic approaches, demonstrating that com-
bining some of the previous independent solutions can outperform individual results [57], [58],
[59], [60], [61]. These holistic approaches are commonly based in building probabilistic models
such as CRFs, for integration and reasoning at pixels, regions or object levels (including their
attributes).

Other approaches try to keep the problems separated, as for example the work of Cadena
et al [62]. They propose a distributed scene understanding system that treat it perception task
as software modules. These, can be activated or deactivated without impairing the rest of the
system, allowing the communication between modules to improve their respective performances.

Following the same progression as other computer vision problems, scene understanding is
started these days to be analysed with Deep Learning technologies. In this way, a very recent

2Upconvolutional, or deconvolutional layers, have been used in different works (as [37]) and performs the
opposite operation than the convolution
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work of Shao et al [63] propose a convolutional neural network model to jointly learn appearance
and motion features and effectively combine them.

4 Work Plan

In this chapter we will present the different tasks to be carried out for the accomplishment of
the objectives of this research plan, as well as an intended Gantt chart for their execution.

• Task 1 - Literature Review.
This task aims to obtain a general overview on the state-of-art about Convolutional Neural
Networks by reviewing its main concepts, structures and characteristics. We will also
analyse its successful performance beating standard feature-based approaches in common
computer vision problems such as object classification and detection as well as extracting
low level features like optical flow and semantic per-pixel segmentation.

• Task 2 - Low level information extraction using CNNs.
The aim of this task is to exploit CNNs inherent properties in order to obtain low level
features from the scene. We will focus on developing CNNs for estimating the optical flow
between images as well as for performing per-pixel semantic segmentation.

Task 2.1 - Explore and develop CNN architectures for computing optical flow.

Task 2.2 - Explore and develop CNN architectures for performing per-pixel semantic
segmentation.

Task 2.3 - Train proposed networks only with synthetic data and explore its general-
ization capacities as well as the transference of learning when retrained with real data.

• Task 3 - Scene Understanding based on CNNs.
Within this task we aim to design and develop new CNN architectures able to perform
multimodal feature integration. We aim to exploit the low level features obtained previously
and combine them in order to solve higher level computer vision problems such as scene
understanding.

Task 3.1 - Propose and develop end-to-end trainable CNN architectures able to inte-
grate the different extracted features with appearance RGB images.

Task 3.2 - Investigate on adding depth features (dense depth from cameras or sparse
data provided by laser scanners) into the proposed CNN architectures. How to use unknown
sized inputs into CNNs.

Task 3.3 - Explore techniques for introducing specific domain and application knowl-
edge into the networks to make the approaches efficient for autonomous driving.

• Task 4 - Research Stay:
Research stay in an international laboratory.

• Task 5 - Final Thesis Document:
Writing, deposit and defense of the final doctoral thesis.
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2014 2015 2016 2017

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Literature review - 1

Low level feature extraction- 2

Preliminary Work 2.0

Optical Flow with CNNs 2.1

Semantic Segmentation with CNNs 2.2

Synthetic vs Real Data. CNNs Generalization 2.3

High Level Scene Understanding with CNNs - 3

Calculated Features Integration with CNNs 3.1

Sparse Information Integration 3.2

Introducing Specific Domain and Application Info. 3.3

Research Stay - 4

Elaboration of the dissertation - 5

Figure 7: Work plan of the proposed work
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Figure 8: Sample images of our Boosting-based feature integration approach for people detection in RGB-D image
spaces. Full people annotations are indicated by blue boxes. Magenta rectangles correspond to occluded people.
Correctly detections (true positives) are represented in green. False positives are shown by red boxes. Columns 4
and 5 shows some false false positives (correct detections but not annotated in the dataset), which really penalises
our detector. However we achieve very good results around a 89% of EER, beating other methods.

5 Preliminary Results

Preliminary work on this thesis has focused on the studio of the state of the art, and investigations
tackling traditional ways of facing some of the problems we have set as objectives in this research
plan.

On one hand we have explored traditional feature integration methods for building a strong
classifier, so that obtaining a better and practical notion of how they work for further comparison
with CNNs based methods. For doing this, we proposed in [64] a new and fast method for
detecting people in dense appearance and depth images by building a strong classifier able to
learn to integrate the most discriminative features from both spaces. We use as features Random
Ferns and by means of an AdaBoost we build a strong classifier able to integrate the most
discriminative features from both spaces in a final robust model. We validate our approach by
tackling the problem of people detection in a challenging RGB-D database outperforming state-
of-the-art approaches (see Figure 8) in spite of the difficult environment conditions, obtaining
around an 89% of Equal Error Rate.

On the other hand we have explored the problem of detecting moving objects with the sparse
information provided by single-layer range scanner, as these sensors are typically used in au-
tonomous vehicles technology. We wanted to know the possibilities and difficulties of standard
approaches for detecting objects by building features manually within this sparse data. The
conclusion of this work is that single-layer range-laserscanner by its own provides not enough
information for performing high level semantic scene understanding, and therefore additional
sources of information such as appearance RGB images are needed.

This preliminary research is presented in [65], where we approached the moving object de-
tection problem with a standard detection+tracking solution, focusing on the detection part. In
order to deal with the very little information obtained from the used laser-scanner, we realised
that only geometric features such as lines and corners could be extracted from the objects (clus-
ters of points) detected. We have also realised that one of the main problems when working
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with one single laserscanner is the partial observability of objects and therefore, the absence of
any reference point that could be tracked over time. In this work we propose a reference prop-
agation algorithm that aims to solve this problem by propagating singular object geometries
found. However, we consider that this problem could be better solved with the introduction of
additional appearance information such as RGB images. Moreover, due to the robust results and
high performance that CNNs are obtaining these days, we will in this thesis research on how to
integrate both laser features and appearance as well as detect moving obstacles by making use
of these networks.

5.1 Preliminary Publications
The preliminary work has led to the following already published congress results:

• [64] V. Vaquero, M. Villamizar, A. Sanfeliu. Real time people detection combining appear-
ance and depth image spaces using boosted random ferns. In Robot 2015: Second Iberian
Robotics Conference, Vol. 418 of Advances in Intelligent Systems and Computing, 2015,
pp. 587–598.

• [65] V. Vaquero, E. Repiso, A. Sanfeliu, J. Vissers, M. Kwakkernaat. Low cost, robust and
real time system for detecting and tracking moving objects to automate cargo handling in
port terminals. In Robot 2015: Second Iberian Robotics Conference, Vol. 418 of Advances
in Intelligent Systems and Computing, 2015, pp. 491–502.
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