
Treball de Fi de Màster

Master’s degree in Automatic Control and Robotics

Supervision of an Humanoid Robot

MEMÒRIA

 Autor: Giulia Angarano
 Directors: Dr. Vicenç Puig
 Dr. Guillem Alenyà
 Convocatòria: July 2017

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

3

Abstract

Robots are physical systems with varying degrees of autonomy that operate in different
and dynamic physical environments. Their use in our daily lives is increasing, as it is
appealing for tasks that can be referred to as the four Ds —too Dangerous, too Dull,
too Dirty, and too Difficult— to be done by humans.

Nevertheless, robotic systems are prone to different types of faults, which have the
potential to affect the efficiency and the safety of the robot and/or its surroundings. For
these reasons, FDD (Fault Detection and Diagnosis) techniques are nowadays essential
in robotics, with the aim of facilitating the system recovery.

Based on such considerations, this thesis addresses the problem of supervision of a
humanoid robot, specifically focusing on its head.

With this scope in mind, the robotic system has been modelled and controlled by
means of a linear parameter varying (LPV) feedback controller.

Hence, a fault detection and isolation scheme has been implemented using the LPV
approach. Such a method has been selected as the one to be followed as it encompasses
the performance requirements a humanoid robot implies: it has to detect faults quickly,
online and with a low computational burden, according to expectations autonomously
generated.

Later, a fault tolerant scheme has been designed to compensate the faulty effect,
once the fault is detected and isolated.

Lastly, all the above-mentioned schemes have been tested in simulation.

5

Contents

Abstract 3

Index 3

List of Figures 7

List of Tables 9

1 Introduction 11

1.1 Motivation . 11

1.2 Thesis objectives . 12

1.3 Thesis outline . 13

2 State of the art 15

3 Robot model 21

3.1 Lagrange approach . 22

3.2 Newton-Euler approach . 25

3.2.1 Forward kinematics . 25

3.2.2 Newton-Euler algorithm . 27

4 LPV Model 33

5 LPV Control 39

6 Fault/disturbance estimation 47

6 Chapter 0. CONTENTS

7 Simulation results 49

7.1 Case I. Full observability . 50
7.2 Case II. Partial observability . 52
7.3 Case III. Partial observability - UIO Observer 54

8 Socioeconomic impact 57

9 Project budget 59

Conclusions 60

9.1 Future work . 62

Bibliography 63

7

List of Figures

1.1 TIAGo robot [10] . 13

2.1 FDD approaches pros and cons table . 16

2.2 Some examples of robots . 17

2.3 FDD challenges in robotics . 20

3.1 Head degrees of freedom . 22

3.2 Newton-Euler algorithm . 28

4.1 Trend of γ(θ2) . 37

4.2 Trend of φ(θ2) with θ̇1 = 3 . 37

4.3 Matrix A bounding box . 38

4.4 Matrix B bounding box . 38

5.1 Closed-loop poles for K=Ki, i=1,...,4 . 43

5.2 Closed-loop poles for K=Ki (red) and L=Li (blue) , i=1,...,4 45

7.1 Case I. Simulink scheme . 50

7.2 Case I. θ1 trend . 51

7.3 Case I. θ2 trend . 51

7.4 Case II. Simulink scheme . 52

7.5 Case II. Real and estimate θ1 trend . 53

7.6 Case II. Real and estimate θ2 trend . 53

7.7 Case III. Simulink scheme . 54

7.8 Case III. Real and estimate θ2 trend . 55

8 Chapter 0. LIST OF FIGURES

7.9 Case III. Real and estimate θ1 trend . 55
7.10 Case III. Real and estimate θ2 trend . 56

9

List of Tables

3.1 Modified DH parameters . 26
3.2 System states physical limits . 26

4.1 System states physical limits . 36
4.2 LPV parameters limits . 36

11

Chapter 1

Introduction

1.1 Motivation

Robots are physical systems with varying degrees of autonomy that operate in different
and dynamic physical environments, e.g., satellites, Martian rovers, unmanned aerial,
ground, or underwater vehicles.

The use of robots in our daily lives is increasing. Based on data published in World
Robotics [1], Guizzo [2] points to an increase in the world robot population from 4.5
million in 2006 to 8.6 million in 2008. Recent reports [3,4] by the International Federation
of Robotics (IFR) from 2016 describe yearly increases of 15% and 25% in sales of service
and industrial robots, respectively. The use of robots is appealing for tasks that can be
referred to as the four Ds —too Dangerous, too Dull, too Dirty, and too Difficult— to
be done by humans.

Indeed, in a general sense, a robotic system is engaged in three main processes [9]:
sensing, thinking, and acting.

The local environment and the robot’s own body are sensed by different sensors. The
“thinking” component involves (a) the extraction of information from the sensor-data,
and (b) the use of acquired knowledge to decide on a course of action(s) to achieve the
goal(s). Then, according to the decisions made by the robot, instructions are issued
to different actuators that, in turn, act and affect the robot and its local environment.
These effects are sensed by the robot’s sensors and this cycle continues until the desired

12 Chapter 1. Introduction

goals are achieved.
However, like any physical system, these intricate and sometimes expensive machines

are prone to different types of faults such as wear and tear, noise, or control failures [5].
In the robotics domain, faults have the potential to affect the robot’s efficiency, cause
failures, or even jeopardize the safety of the robot or its surroundings [6]. Hence, when
a fault is detected, it is imperative to proceed with a diagnosis process to identify which
internal components are involved, aiming at facilitating the system recovery [7].

1.2 Thesis objectives

In this master thesis, the problem of supervision of an humanoid robot has been ad-
dressed. Specifically, the mobile manipulator robot TIAGo by PAL robotics has been
taken as reference and the focus has been put on its head.

In order to achieve the above-mentioned objective, the following tasks have to be
carried out:

• by considering the robotic head as a 2-dof manipulator, a dynamic model of the
robot head has to be developed by means of the Newton-Euler algorithm;

• a control scheme has to be designed, with the following characteristics:

– it has to be able to make the robot head reaching a reference orientation given
in terms of the two joints angles;

– it has to account for the real sensors availability on the robot head i.e. for
the lack of some of them;

• a fault detection and isolation scheme has to be implemented;

• a fault tolerant control scheme has to be implemented to compensate the isolated
faulty effect.

Introduction 13

Figure 1.1: TIAGo robot [10]

1.3 Thesis outline

The present work is structured as follows.

CHAPTER 2 - State of the art

In this chapter, an overview on the currently mostly used approaches in the field of
Fault Detection and Diagnosis (FDD) are pointed out, together with their applications
in robotics.

CHAPTER 3 - Robot head model

This chapter deals with the development of the robot head dynamic model, by means
of the Newton-Euler approach, whose resulting equations have been verified by imple-

14 Chapter 1. Introduction

menting the Newton-Euler algorithm in MATLAB, through the use of the Robotics
Toolbox.

Moreover, the "energy based" Lagrange approach has been sketched out.

CHAPTER 4 - LPV Model
Starting from the equations of motion obtained in Chapter 3, in this chapter the

robot head model is reformulated as an LPV one.

CHAPTER 5 - LPV Control
This chapter covers the development of an LPV controller for the above-mentioned

model, whose implementation implies the states full observability. Hence, the construc-
tion of an LPV observer is presented to overcome such unrealistic assumption.

CHAPTER 6 - Estimation fault/disturbance
In this chapter, an improvement of the previously explained estimation scheme is

pointed out: a LPV UIO is proposed, so that not only the system unobservable states
can be estimated, but also eventual unknown faults or disturbances acting on the system.

CHAPTER 7 - Simulation results
This chapter is dedicated to showing the simulations results obtained from the MAT-

LAB and Simulink implementation of the schemes (fault tolerant and not) described in
the previous chapters.

CHAPTER 8 - Socioeconomic impact
In this chapter, a brief discussion of possible impacts of this project on economy and

society is presented.

CHAPTER 9 - Project budget
In this chapter, some considerations about the development and implementation of

the system presented in this work are provided from an economic point of view.

CHAPTER 10 - Conclusions and future work
Lastly, some final remarks are presented, as well as some suggestions about possible

future follow-up.

15

Chapter 2

State of the art

The use of robots in our daily lives is increasing as they can be used to realize those
tasks that can be referred to as the four Ds —too Dangerous, too Dull, too Dirty, and
too Difficult— to be done by humans.

However, like any physical system, these machines are prone to different types of
faults, which have the potential to affect the robot’s efficiency, cause failures, or even
jeopardize the safety of the robot or its surroundings [5, 6]. Hence, when a fault is
detected, it is imperative to proceed with a detection and diagnosis process, aimed at
facilitating the system recovery.

This diagnostic information can be used for recovery or for decision making purposes,
such as using undamaged redundant systems or re-planning [7]. The ability to recover
successfully allows the system to be reliable, robust, and efficient, which is ultimately
the reason for applying Fault Detection and Diagnosis (FDD) approaches.

The field of FDD has been studied for many years, leading to three main categories
of FDD approaches: data-driven, model-based, and knowledge-based.

Data-driven approaches are model free. Online data is usually used to statistically
differentiate a potential fault from historically observed normal behavior, e.g., via Prin-
ciple Component Analysis [11].

Model-based approaches [12] typically use analytical redundancy to detect and di-
agnose faults. The correct behavior of each component in the system is modeled an-
alytically and the expected output can be compared to the observed output. Among

16 Chapter 2. State of the art

them, quantitative models involve mathematical equations, which typically describe the
functionality of components. Qualitative models involve logic-functions that describe
the behavior of components by representing qualitative relations between the observed
variables.

Lastly, knowledge-based [13] approaches associate recognized behaviors with prede-
fined known faults and diagnoses.

Pros and cons of the above-mentioned categories are summarized in Fig.2.1 [8].

Figure 2.1: FDD approaches pros and cons table

Although the study of FDD for robotics is relatively new, there are many FFD
approaches which can be borrowed from other fields of study to be applied to robotic
systems, depending on the type of the robotic system itself.

Indeed, nowadays there is a broad range of systems that can be considered of robotic
type, characterized by a number of different features. It is actually such variety that
makes challenging the application of the FDD techniques to robotic systems.

For the sake of completeness, the following table lists five key characteristics of robotic
systems, together with the different FDD challenges they usually imply and the typical
FDD approaches used to address them. The analysis of such relations would need a
deeper discussion which is out of the scope of this work.

The interested reader is referred to [8] for a deeper understanding.

Nevertheless, as this thesis deals with the implementation of FDD techniques on a
humanoid robot, a particular mention is worth giving to autonomy.

Robotic systems can range from being totally controlled (e.g., a robotic exoskeleton
or suit) to systems with a high degree of autonomy. Fully autonomous robots do exist;
some of these robots carry out a simple task (e.g., vacuum cleaning) or operate within a

State of the art 17

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Some examples of robots

very narrow context under the strict confines of their direct environment (e.g., a robotic
arm in an assembly line).

Other more complex systems may have “a human in the loop” with varying degrees
of control and monitoring (e.g., a rover on Mars).

A system is considered more autonomous when it is (a) less dependent on human
operators and (b) remote supporting systems, and (c) able to operate for extensive
periods of time without intervention.

These three attributes challenge FDD approaches in different ways. As the depen-
dency on a human operator and remote support systems decreases, thus, it becomes the
role of the robot to monitor itself and detect faults.

The first challenge is to be able to generate expectations using nothing else but
the robot’s own perceptions; there is no external source to compare with (e.g., human
operator, ground radar station).

The next challenges for an FDD mechanism is to detect faults quickly and online. A
robot has to continue its operation autonomously even in the presence of faults. This
means that faults have to be quickly detected (and handled) as they occur, rather than
retrospectively after the operation has ended (and the data of the entire operation is
available).

The final challenge is to implement an FDD mechanism that requires low computa-

18 Chapter 2. State of the art

tional resources (CPU, Memory). Since there is less dependency on remote supporting
systems, the FDD process has to be carried out on board the robot. The robot has a
limited computational power, most of which is dedicated to mission oriented processes.
A computationally demanding FDD process might interfere with other processes and
ironically be the cause for faults.

The main difficulty in creating an FDD mechanism for an autonomous robot is to
address all of these challenges together, i.e.,generating expectations, quickly, online, with
a low computational burden.

Based on such considerations and making reference to Fig.2.1 it is straightforward
inferring that one approach to address these challenges is with model-based diagnosis
[14], [17].

Indeed, in this case, the diagnostic process relies on an explicit a priori model of the
normal system behavior, its structure, and/or its known faults. Given the (online) sys-
tem input (e.g., instructions), the model, made by a set of analytical equations or logical
formulas, can quickly produce an expectation for the robot’s behavior (e.g., expected
sensor readings). Inconsistencies between the observed behavior and the produced ex-
pected behavior are suspected to be caused by faults.

Then, fault isolation is the process in charge of selecting (minimal) sets of components
which, if regarded as faulty, may explain these inconsistencies [18]. The computational
burden is depended on the type and fidelity of the model.

On the other hand, data-driven and knowledge-based approaches seem to fit more
poorly robotics system requirements.

For what concerns data-driven approaches, the statistical ones, such as outlier-
detection [19], may not be an attractive choice for an FDD mechanism for a robotic
system as large amounts of data are to be processed online, carrying a heavy computa-
tional load and might not detect the fault in time [20]. Yet, some techniques do improve
traditional approaches and address these challenges.

On the contrary, machine-learning data-driven approaches are able to produce an
FDD model, which can be quickly used online as learning offline reduces the online
computational load. Nevertheless, it produces a static model, which may not fit new
behaviors. Conversely, learning online increases the computational load but produces a

State of the art 19

dynamic model. An attractive compromise is investigated in [21] and consists in adding
the detected faults to a dynamic model.

This thesis, dealing with a model-based FDD approach, perfectly fits the remarks
pointed out in this chapter.

20 Chapter 2. State of the art

Figure 2.3: FDD challenges in robotics

21

Chapter 3

Robot model

As already mentioned in Chapter 2, this work is aimed at the implementation of a fault
detection and isolation scheme by means of a model-based approach. Hence, in order to
achieve this goal, the model of the robotic system in analysis has been developed and is
reported in the following.

It is worth underlining that the model proposed in this chapter is focused on the
robotic head rotation and considers the trunk rotation as a disturbance [22], which can
be encompassed in the scheme as any other eventual fault/disturbance (see Chapter 6).

Under such assumption, the system to be taken into consideration is a 2-DOF system.
Indeed, TIAGo head is able to perform two rotational movements, namely pan and tilt
rotations, as shown in Fig. 3.1.

Regarding what concerns the roll rotation, the robotic head is not equipped with it,
so it has not been investigated in this work.

Starting from such knowledge, and for the sake of simplicity, such system has been
likened to a 2R manipulator, whose model can be obtained by means of two approaches,
i.e. the Lagrange one and the Newton-Euler one.

First, for completeness, the Lagrange approach has been sketched out. Later, the
Newton-Euler one has been developed entirely.

Indeed, as it is possible to obtain a software-based prove only of the results got
from the Newton-Euler method, the latter has been selected as the one to be taken into
account in the following. Further investigations about the Lagrange approach are left

22 Chapter 3. Robot model

Figure 3.1: Head degrees of freedom

to the interested reader.

3.1 Lagrange approach

In this section, the derivation of the robot equations of motion by means of the La-
grangian formulation [23] are sketched out.

Previously to showing its development, it is worth noticing that the inertia tensors
of both joints have been considered diagonal, as their off-diagonal terms are negligible.

C1I1 =


Ixx1 0 0

0 Iyy1 0

0 0 Izz1


C2I2 =


Ixx2 0 0

0 Iyy2 0

0 0 Izz2


First of all, as we deal with an "energy-based" approach to model the dynamics, an

expression for the joints kinetic energy is obtained. The kinetic energy of the i-th link,

Robot model 23

ki, can be expressed as:
ki =

1

2
miv

T
Ci
vCi

+
1

2
iωTi

CiI iωi

where the first term is the kinetic energy due to linear velocity of the link center of mass
and the second term is the kinetic energy due to angular velocity of the link.

Being the centre of mass of the first joint positioned along its own axis of rotation,
the first term is null and the kinetic energy results

k1 =
1

2
Izz1 θ̇

2
1.

Similarly the kinetic energy corresponding to the second joint can be computed taking
into account that in this case each velocity term is composed by both the own velocity
(linear and rotational) of link 2 and the velocity propagated from link 1 to link 2.

The total kinetic energy is then the sum of the kinetic energy in the individual links,
that is,

k =
2∑
i=1

ki. (3.1)

Moreover, the potential energy of the i-th link, ui, can be expressed as

ui = −mi
0gT 0PCi

+ urefi

where 0g is the 3 × 1 gravity vector
[
0 0 −g

]
, 0PCi

is the vector locating the center
of mass of the i-th link, and urefi is a constant chosen so that the minimum value of ui
is zero.

The total potential energy is the sum of the potential energy in the individual links,
that is,

u =
2∑
i=1

ui (3.2)

.

Once the expressions in Eq.(3.1) and in Eq.(3.2) have been evaluated, the Lagrangian
dynamic formulation provides a means of deriving the equations of motion from a scalar
function called the Lagrangian. Such function is defined as the difference between the

24 Chapter 3. Robot model

kinetic and potential energy of a mechanical system:

L(θ, θ̇) = k(θ, θ̇)− u(θ). (3.3)

The equations of motion are then given by

τ =
d

dt

∂L

∂θ̇
− ∂L

∂θ
=

d

dt

∂k

∂θ̇
− ∂k

∂θ
+
∂u

∂θ
(3.4)

where τ is the n× 1 vector of actuator torques.

Robot model 25

3.2 Newton-Euler approach

In this section, the robotic head model is developed by means of the Newton-Euler
algorithm [23], which is a "force-balance" approach to dynamics, as it describes how
forces, inertias and accelerations relate.

It is worth recalling that, as mentioned above, the results reported in this section
have been verified by implementing this method in MATLAB, specifically by means of
the MATLAB Robotics Toolbox.

Previously to the Newton-Euler algorithm implementation, the computation of the
robot forward kinematics is required.

3.2.1 Forward kinematics

As well known in robotics, any robot can be described kinematically by four quantities
for each link: the Denavit—Hartenberg parameters. To describe the link itself, and to
describe the link connection to a neighboring link.

For a revolute joint, as those present in the robot in analysis, θi is called the joint
variable and the other three quantities would be fixed link parameters. For prismatic
joints, di is the joint variable and the other three quantities are fixed link parameters.

In order to obtain their values, a reference frame has been attached to each link, ac-
cording to the convention in [23] and the DH parameters have been computed according
to the following definitions:

di = the distance from X̂i−1 to Ẑi measured along Ẑi

θi = the angle from X̂i−1 to Ẑi measured about Ẑi

ai−1 = the distance from Ẑi−1 to Ẑi measured along X̂i−1

αi = the angle from Ẑi−1 to Ẑi measured about X̂i−1

The resulting modified DH parameters for our 2R robot are shown in Table 3.1.

Once the parameters have been obtained, it is possible to construct the transform
that defines frame i relative to the frame i—1 as a function of the i-th joint variable.

26 Chapter 3. Robot model

i θi di αi−1 ai−1

1 θ1 0 0 0
2 θ2 + π

2
l1 π 0

3 0 l3 −π l2

Table 3.1: Modified DH parameters

State Min Max

θ1 −75◦ 75◦

θ2 −60◦ 45◦

θ̇1 (m/s) 0 3
θ̇2 (m/s) 0 3

Table 3.2: System states physical limits

For any given robot, the general form of the link transformation i−1
iT is:

i−1
iT =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (3.5)

Recalling that:

cos
(
α +

π

2

)
= − sin(α) sin

(
α +

π

2

)
= cos(α) (3.6)

and substituting the parameters, the transform for both links are obtained.

0
1T =


c1 −s1 0 0

s1 c1 0 0

0 0 1 0

0 0 0 1

 (3.7)

Robot model 27

1
2T =


−s2 −c2 0 0

0 0 −1 0

c2 −s2 0 l1

0 0 0 1

 (3.8)

2
3T =


1 0 0 l2

0 0 1 l3

0 −1 0 0

0 0 0 1

 (3.9)

Lastly, the individual link-transformation matrices can be multiplied together to find
the single transformation that relates frame N to frame 0:

0
NT = 0

1T
1
2T . . .

N−1
NT (3.10)

In the TIAGo head case:
0
3T = 0

1T
1
2T

2
3T (3.11)

3.2.2 Newton-Euler algorithm

Aiming at obtaining the robot equations of motion by means of the Newton-Euler al-
gorithm, each link has been considered as a rigid body, whose mass distribution is
characterized by its center of mass position and its inertia tensor.

It is worth recalling that the inertia tensors of both joints have been considered
diagonal, as in Section 3.1.

Hence, the iterative Newton-Euler dynamics algorithm has been applied. It is com-
posed of two parts: first, link velocities and accelerations are iteratively computed from
link 1 out to link n and the Newton-Euler equations are applied to each link. Second,
forces and torques of interaction and joint actuator torques are computed recursively
from link n back to link 1.

The equations are summarized in Fig.3.2 for the case of all joints rotational (as
TIAGo head case).

The effect of gravity loading on the links can be included quite simply by setting

28 Chapter 3. Robot model

(a)

(b)

Figure 3.2: Newton-Euler algorithm

0v̇0 = G, where G has the magnitude of the gravity vector but points in the opposite
direction. This is equivalent to consider that the base of the robot is accelerating upward
with 1 g acceleration. This fictitious upward acceleration causes exactly the same effect
on the links as gravity would and its expression can be rewritten as:

0v̇0 = gẐ0.

Moreover, since there are no external forces acting on the robot head, so we have

f3 = 0,

n3 = 0.

In addition, as previously mentioned, the trunk rotation is considered as a distur-

Robot model 29

bance, such that the base of the robot head is not rotating. Hence, we have

ω0 = 0,

ω̇0 = 0.

Lastly, before applying the algorithm, it is worth recalling that the following relation
holds.

i
i+1R = i+1

iR
T

The algorithm has been then applied, leading to the following equations

τ1 = Izz1 θ̈1 +
1

2
θ̈1(Ixx2 + Iyy2) +

1

2
θ̈1c(2θ2)(Ixx2 − Iyy2) + d2

4m2θ̈1 − d2
4m2θ̈1c(2θ2)2

− Ixx2 θ̇1θ̇2s(2θ2) + Iyy2 θ̇1θ̇2s(2θ2) + d2
4θ̇1θ̇2m2s(4θ2) (3.12)

τ2 = Izz2 θ̈2 +
1

2
s(2θ2)θ̇2

1(Ixx2 − Iyy2) +m2d
2
4θ̈2 −

1

2
m2d

2
4θ̇

2
1s(4θ2)− d4m2gs(2θ2) (3.13)

As expected, Eq.3.12 and Eq.3.13 give expressions for the torque at the actuators as
a function of joint position, velocity and acceleration.

Also in this case, such equations can be rewritten in state-space form, as follows:

τ = M(θ)θ̈ + V (θ, θ̇) +G(θ)

where M(θ) is then n × n mass matrix of the manipulator, V (θ, θ̇) is a n × 1 vector of
centrifugal and Coriolis terms and G(θ) is an n× 1 vector of gravity terms.

Each element ofM(θ) and G(θ) is a complex function that depends on θ, the position
of all the joints of the manipulator. Each element of V (θ, θ̇) is a complex function of
both θ and θ̇.

To be even more precise, by writing the velocity-dependent term, V (θ, θ̇), in a dif-
ferent form, we can rewrite the dynamic equations in the so-called configuration-space
formulation:

τ = M(θ)θ̈ +B(θ)[θ̇θ̇] + C(θ)[θ̇2] +G(θ)

where B(θ) is a matrix of dimensions n×nn¯1
2

of Coriolis coefficients, [θ̇θ̇] is an nn¯1
2
× 1

30 Chapter 3. Robot model

vector of joint velocity products given by

[θ̇θ̇] = [θ̇1θ̇2]T ,

C(θ) is a n× n matrix of centrifugal coefficients, and [θ̇2] is an n× 1 vector given by

[θ̇1
2
θ̇2

2
]T .

It is worth noticing that, in this formulation, all matrices are a function of only the
joints position, fact that is very helpful for updating the model as the robot moves its
head.

Indeed, for TIAGo’s head the resulting equations are the following ones

[
τ1

τ2

]
=

[
Izz1 +m2d

2
4 + Ixx2c

2
2 + Iyy2s

2
2 −m2d

2
4c(2θ2)2 0

0 Izz2 +m2d
2
4

][
θ̈1

θ̈2

]

+

[
−2c2s2(Ixx2 − Iyy2) +m2d

2
4s(4θ2)

0

]
θ̇1θ̇2

+

[
0 0

c2s2(Ixx2 − Iyy2)− 1
2
m2d

2
4s(4θ2) 0

][
θ̇2

1

θ̇2
2

]
+ g

[
0

−m2d4s(2θ2)

]

which perfectly correspond to those obtained by implementing the algorithm in Fig.3.2
in MATLAB.

Lastly, such equations can be expressed in a shorter and more intuitive way, as
follows:[

τ1

τ2

]
=

[
α + β(θ2) 0

0 ξ

][
θ̈1

θ̈2

]
+

[
δ(θ2)

0

]
θ̇1θ̇2 +

[
0 0

η(θ2) 0

][
θ̇2

1

θ̇2
2

]
+ g

[
0

λ(θ2)

]
(3.14)

where the dependency on the joints position is even more emphasized. As a matter of
facts, α and ξ are constant terms, while β, δ, η and λ depend on θ2.

Robot model 31

From Eq.(3.14), the model equations of interest are derived straightforwardly:

θ̈1 = − δ(θ2)
α+β(θ2)

θ̇1θ̇2 + 1
α+β(θ2)

τ1

θ̈1 = −η(θ2)
ξ
θ̇2

1 + 1
ξ
τ2 − λ(θ2)

ξ

θ̇1 = d
dt
θ1

θ̇2 = d
dt
θ2.

(3.15)

33

Chapter 4

LPV Model

The model obtained in Chapter 3, namely Eq.3.15 can be expressed in the state space
formulation

ẋ = A(x)x+B(x)u+ E(x)

y = C(x)x+D(x)

by considering as states, control variables and output respectively the following vectors

x =


θ̇1

θ̇2

θ1

θ2

 u =

[
τ1

τ2

]
y =

[
θ1

θ2

]
.

Hence, we obtain the following formulation
θ̈1

θ̈2

θ̇1

θ̇2

 =


0 − δ(θ2)

α+β(θ2)
θ̇1 0 0

−η(θ2)
ξ
θ̇1 0 0 0

1 0 0 0

0 1 0 0



θ̇1

θ̇2

θ1

θ2

+


1

α+β(θ2)
0

0 1
ξ

0 0

0 0


[
τ1

τ2

]
+


0

−λ(θ2)
ξ

0

0

 (4.1)

34 Chapter 4. LPV Model

[
θ1

θ2

]
=

[
0 0 1 0

0 0 0 1

]
θ̇1

θ̇2

θ1

θ2

 (4.2)

where an important consideration results evident: in the case of analysis, contrary to
matrices A(x) and B(x), matrix C and D are constant.

Moreover, analyzing the results of the previous chapter, it can be noticed that the
following relation holds:

δ(θ2) = −2η(θ2) (4.3)

Thus, renaming some terms as follows

α + β(θ2) = γ(θ2) (4.4)

δ(θ2)θ̇1 = ϕ(θ2, θ̇1) (4.5)

the state space formulation becomes:
θ̈1

θ̈2

θ̇1

θ̇2

 =


0 −ϕ(θ2,θ̇1)

γ(θ2)
0 0

ϕ(θ2,θ̇1)
2ξ

0 0 0

1 0 0 0

0 1 0 0



θ̇1

θ̇2

θ1

θ2

+


1

γ(θ2)
0

0 1
ξ

0 0

0 0


[
τ1

τ2

]
+


0

−λ(θ2)
ξ

0

0



[
θ1

θ2

]
=

[
0 0 1 0

0 0 0 1

]
θ̇1

θ̇2

θ1

θ2

 (4.6)

From now on the matrix E(x) will be neglected and its role will be further investigated
later.

At this point, all the matrices elements depend on ϕ and γ. Such consideration
suggests that the system in analysis is an LPV one.

Indeed, following the terminology in [24], LPV systems are linear time-varying plants

LPV Model 35

whose state-space matrices are fixed functions of some vector of varying parameters
Ψ(t) [25].

Generally speaking, LPV systems are described by state-space equations of the form

ẋ = A(Ψ(t))x+B(Ψ(t))u

y = C(Ψ(t))x+D(Ψ(t))u

where x, u and y denote the state, input and output vectors respectively.

Often the varying parameters Ψ(t) can be measured in real time during system
operation. Consequently, the control strategy can exploit their available measurements,
adjusting to the variations in the plant dynamics in order to maintain stability and high
performance along all trajectories Ψ(t). In other words, the controller is ‘self-scheduled’,
that is, automatically gain-scheduled with respect to Ψ(t), leading to a performance
increase.

Such procedure is based on the following LPV systems property: when ‘freezing’
Ψ(t), to some given value Ψ, the LPV system becomes an LTI system described by the
transfer function

G(σ) = D(Ψ) + C(Ψ) [σI − A(Ψ)] -1

where σ stands for the Laplace variable s in the continuous-time case and for the Z-
transform variable z in the discrete-time case.

Hence, in order to overcome the difficulty of managing an infinite number of possible
trajectories, we confine ourself to LPV systems [25] where the time-varying parameter
Ψ(t) varies in a polytope Θ of vertices ω1, ω2, . . . , ωr; that is,

Ψ(t) = Θ := Co{ω1, ω2, . . . , ωr}.

In other words, we deal with a polytopic LPV system, whose state-space matrices
range in a polytope of matrices whose vertices are the images of the vertices ω1, ω2, . . . , ωr:[

A(Ψ) B(Ψ)

C(Ψ) D(Ψ)

]
∈ Co

{[
Ai Bi

Ci Di

]
:=

[
A(ωi) B(ωi)

C(ωi) D(ωi)

]}
, i = 1, . . . , r.

36 Chapter 4. LPV Model

Coming back to TIAGo’s head model the time-varying parameters to be considered
are ϕ and γ, which can assume any value respectively in [ϕ, ϕ] and [γ, γ].

Previously to compute the values of such extreme, it is worth recalling their expres-
sions:

γ(θ2) = Izz1 +m2d
2
4 + Ixx2c

2
2 + Iyy2s

2
2 −m2d

2
4c(2θ2)2

ϕ(θ2, θ̇1) = (−2c2s2(Ixx2 − Iyy2) +m2d
2
4s(4θ2))θ̇1.

At this point it is evident that the parameters extremes depend on the system states
values, specifically on θ2 and θ̇1, which in turn are bounded by the physical system limits
reported in Table 4.1.

State Min Max

θ1 −75◦ 75◦

θ2 −60◦ 45◦

θ̇1 (m/s) 0 3
θ̇2 (m/s) 0 3

Table 4.1: System states physical limits

Consequently, an optimization process has been carried out, aimed at obtaining the
above-mentioned parameters extremes. Such computation has been realized by means
of the MATLAB Optimization Toolbox, leading to the results listed in Table 4.2.

Parameter Min Max

γ 0.0055 0.0091
ϕ 0.0110 -0.0110

Table 4.2: LPV parameters limits

Those results are also visible in Fig.4.1 and Fig.4.2, where the trend of γ and ϕ

respectively has been plotted with respect to θ2 ∈ [θ2, θ2].
For what concerns ϕ, it is worth underlining that θ̇1 affects its trend only in terms of

amplitude. Hence, it is enough to analyze it fixing θ̇1 to its maximum value, namely 3.
Once the parameters extremes have been computed, the sought polytope vertexes

have been identified.

LPV Model 37

Figure 4.1: Trend of γ(θ2)

Figure 4.2: Trend of φ(θ2) with θ̇1 = 3

Therefore, recalling that only matrices A and B are varying, also the matrices poly-
topes, having as vertexes Ai and Bi, has been straightforwardly determined, resulting
in the bounding boxes shown in Fig.4.3 and Fig.4.4.

38 Chapter 4. LPV Model

Figure 4.3: Matrix A bounding box

Figure 4.4: Matrix B bounding box

39

Chapter 5

LPV Control

This chapter formulates the control problem for the polytopic LPV systems, modelled
as in Chapter 4.

Assuming complete measurement of the varying parameters Ψ(t), the controller is
allowed to incorporate these measurements in the same LPV fashion as the plant. The
resulting LPV controller exploits all available information on Ψ(t), to adjust to the cur-
rent plant dynamics. This provides smooth and automatic gain-scheduling with respect
to the varying parameters Ψ(t).

As pointed out by [26], in order not to deal with a problem having an infinite number
of constraints and, thus, not easily tractable, the following assumption has to be satisfied:
matrices B, C and D have to be parameter-independent.

According to the model obtained in Chapter 4, and here reported,

ẋ = A(Ψ(t))x+B(Ψ(t))u

y = Cx+Du

matrices C and D meet such requirement, while matrix B does not, as it depends on
the parameter γ.

40 Chapter 5. LPV Control

B =


1

γ(θ2)
0

0 1
ξ

0 0

0 0



However, this difficulty can be alleviated by pre- and/or post-filtering the control
inputs u. Specifically, a fast dynamic filter has been added as suggested by [25] in the
form

ẋf = Afxf +Bfuf[
τ̇1

τ̇2

]
=

[
−ψ 0

0 −ψ

][
τ1

τ2

]
+

[
ψ 0

0 ψ

][
uτ1

uτ2

]
where ψ represents the filter gain and uf is the new control variable vector.

Note that this new added states have fast dynamics, so that do not significantly alter
the original problem.

Then, the original fourth order system is transformed into a new sixth order system

˙̃x = Ã(Ψ)x̃+ B̃uf

y = C̃x̃ (5.1)

with state and input vectors as

x̃ =



θ̇1

θ̇2

θ1

θ2

τ1

τ2


ũ =

[
uτ1

uτ2

]

LPV Control 41

and matrices Ã, B̃ and C̃ as

Ã =

[
A B

02x4 Af

]
=



0 −ϕ(θ2,θ̇1)
γ(θ2)

0 0 1
γ(θ2)

0
ϕ(θ2,θ̇1)

2ξ
0 0 0 0 1

ξ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 −ψ 0

0 0 0 0 0 −ψ



B̃ =



0 0

0 0

0 0

0 0

ψ 0

0 ψ



C̃ =

[
0 0 1 0 0 0

0 0 0 1 0 0

]
. (5.2)

Note that the control and measurement matrices are now parameter-free as required.
Moreover, whenever the plant model includes actuator and sensor dynamics, the con-
trol and measurement matrices are still parameter-free. Hence the proposed filtering
operations are not restrictive in a practical perspective.

Once these arrangements have been realized in the system model, the problem of
generating the appropriate behavior of TIAGo’s head has been addressed. In this work
a feedback LPV controller is proposed for performing such task, given a desired reference
in terms of joints position.

Such controller K is in charge of computing smooth control actions (the joint torques)
such that the robotic head is capable of achieving the required orientation, while respect-
ing the system physical limits.

To design K a polytopic approach has been followed. Hence the controller gain is

42 Chapter 5. LPV Control

obtained in the form

K(Ψ) =
2nΨ∑
i=1

µi(Ψ)Ki (5.3)

where nΨ is the number of scheduling variables contained in Ψ := [ψ1(t), . . . , ψnΨ
] -here

nΨ = 2 and µi(Ψ) is given by

µi(Ψ) =

nΨ∏
j=1

ζij(η
j
0, η

j
1), i = 1, . . . , 2nΨ

ηj0 =
ψ̄j − ψj(t)
ψ̄j − ψj

ηj0 + ηj1 = 1, j = 1, . . . , nΨ

where, as already explained, each variable ψj is known and varies in a defined interval
ψj(t) ∈ [ψj, ψ̄j].

Moreover, Ki are determined by studying the LMI based LPV stability problem
presented in the following.

Given a continuous state-space system in the form ẋ = Ax + Bu a state feedback
controller u = Kx is sought, such that the closed-loop system is stable. Based on the
Lyapunov theory, the problem can be reformulated in terms of the following LMI:

AP + PA′ +BW +W ′B′ < 0 (5.4)

P > 0 (5.5)

which, if satisfied, has as solution the above-mentioned controller K :

K = WP−1

When applied to an LPV system, the stability problem in Eq.5.4 becomes:

A(Ψ)P + PA(Ψ)′ +BW +W ′B′ < 0

P > 0

LPV Control 43

being characterized by an infinite number of constraints. As already done in the modeling
phase, a polytopic approach can be applied by confining the analysis to the bounding
box vertexes:

AiP + PA′i +BW +W ′B′ < 0 (5.6)

P > 0 (5.7)

where i = 1, . . . , nΨ and Ai(Ψ) are the vertexes of matrix A bounding box.

Solving such problem for TIAGo’s head by means of the software MATLAB, the
vertex controllers Ki(Ψ) have been computed. The correspondent closed-loop systems
poles are shown in Fig. 5.1. It is evident that stability is ensured.

Figure 5.1: Closed-loop poles for K=Ki, i=1,...,4

The proposed state feedback control scheme has been then integrated with a feed-
forward control, in order to make the system gain unitary. Such feedforward matrix is
computed following the next expression:

M = −
[
C̃(−B̃K + Ã(Ψ))−1B̃

]−1

. (5.8)

44 Chapter 5. LPV Control

It is worth pointing out that while the vertex controllers Ki and matrices Ãi can
be computed off-line, the LPV matrices Ã(Ψ) and K(Ψ) must be updated in real time
based on the parameter measurement Ψ.

Indeed, the real time value of matrix Ã(Ψ) can be computed in the same fashion as
K(Ψ):

Ã(Ψ) =
2nΨ∑
i=1

µi(Ψ)Ãi

The control strategy presented till now perfectly fits the ideal case of sensors avail-
ability for measuring all the system states. As a matter of fact, only the measurements
of the joints positions, i.e. the angles θ1 and θ2, are accessible, as shown by matrix C̃
expression in Eq.5.2.

Due to the lack of the other sensors, i.e. there is no one that measures joints veloci-
ties, the design of a state estimator has been developed through a polytopic approach,
analogously to the controller:

L(Ψ) =
2nΨ∑
i=1

µi(Ψ)Li

where the vertex observers Li can be obtained solving the LMI based problem dual to
the Ki controllers one in Eq.5.6:

A′iP + PAi + C ′W +W ′C < 0 (5.9)

P > 0 (5.10)

Moreover, for performance reasons, the observer has been sped up by slightly modi-
fying the LMI in Eq.5.9 as follows:

A′iP + PAi + C ′W +W ′C + 2αobsP < 0

P > 0

where the parameter αobs can be chosen to arbitrarily improve the observer performances.
Here a dynamic 10 times faster than the controller one has been selected, as demonstrated

LPV Control 45

by the plot of the new closed-loop poles in blue in Fig.5.2.

Figure 5.2: Closed-loop poles for K=Ki (red) and L=Li (blue) , i=1,...,4

Note that the same approach could have been followed to speed up also the controller.

47

Chapter 6

Fault/disturbance estimation

The present chapter deals with the design of a Linear Parameter Varying Unknown Input
Observer (LPV UIO), proposed as an improvement to the estimation scheme developed
in Chapter 5. Such observer, indeed, tackles the problem of estimating both the dynamic
states and the eventual disturbance actuating over the system.

As a matter of fact, in this chapter the role of the matrix E in Eq.4, neglected till
now, has been investigated. In order to carry out an analysis as extensive as possible, a
totally generic additive disturbance acting on both angles has been taken into account.

Hence, the matrix Ed actually implemented has the following expression:

Ed =



0 0

0 0

1 0

0 1

0 0

0 0


.

Consequently, the system model in Eq.5 becomes:

˙̃x = Ã(Ψ)x̃+ B̃ũ+ Edd

y = C̃x̃

48 Chapter 6. Fault/disturbance estimation

where d = [dθ1 ; dθ2] is the disturbance vector.
The UIO approach is based on computing the difference between the real system and

the model used for observation:

C̃Edd = ẏ − C̃(˜A(Ψ)ˆ̃x+ B̃ũ).

Thus, considering Θ = (C̃Ed)
+, the disturbance vector can be obtained as:

d = Θ
(
ŷ − C̃(˜A(Ψ)ˆ̃x+ B̃ũ

)
And consequently, decoupling the considered disturbance, the system model can be

rewritten as follows:

˙̃x = Ao(Ψ)x̃+Boũ+ EdΘẏ

y = C̃x̃

where:
Ao = (I − EdΘC̃)Ã

Bo = (I − EdΘC̃)B̃

Then, the state estimation depends on the observer gain L(Ψ) and presents the form:

˙̃̂x =
(
Ao − LC̃

)
ˆ̃x+Boũ+ EdΘẏ + Ly

49

Chapter 7

Simulation results

This chapter is devoted to the description of the simulation schemes implemented in
order to test the LPV control and fault estimation scheme proposed in this thesis.

All simulations have been realized by means of the softwares MATLAB and Simulink
and are presented in the following as listed below:

1. the model has been simulated considering full observability, i.e only the feedback
controller K and the feedforward matrix M have been tested;

2. the observer L has been added to the model in 1), aimed at the estimation of not
measurable states;

3. the UIO observer is added to the model in 1), aimed at the estimation of not
measurable states and of eventually present fault/disturbance.

It is worth underlining that in all simulations the physical limits in Table4.1 have
been taken into account both for the real and estimated states. Indeed, in this first
case, their are embedded in the robot head subsystem, while in the latter case, they are
represented by the subsystem "Limits".

Lastly, for comparison ease, all models have been simulated with the orientation
references set to the same value, namely θ1ref = 0.3 and θ2ref = 0.3.

50 Chapter 7. Simulation results

7.1 Case I. Full observability

As first test, the robotic head system has been considered fully observable, i.e. full
sensors availability has been supposed. Obviously this case does not represent a realistic
situation, but it has been useful as fist approach to the LPV controller implementation.

The Simulink scheme used for such simulation is shown in Fig.7.1.

Figure 7.1: Case I. Simulink scheme

Simulation results 51

The proposed control scheme leads to the following results:

Figure 7.2: Case I. θ1 trend

Figure 7.3: Case I. θ2 trend

From Fig.7.2 and Fig.7.3 it is evident that both angles, namely θ1 and θ2, perfectly
reach the reference with satisfying performances -i.e. no oscillation and/or overshoot is
present.

52 Chapter 7. Simulation results

7.2 Case II. Partial observability

Once the feedback controller has been checked together with the feedforward compen-
sation, a more realistic case has been analyzed.

As the robot head is equipped with two encoders, one per each rotation movement,
the only states which have been considered measurable are the two angles θ1 and θ2.

Consequently, the joints velocities have to be estimated, as explained in Chapter 5.
Then, the feedback controller receives as input no more the real states, but the estimated
ones.

The Simulink scheme used for such simulation is shown in Fig.7.4.

Figure 7.4: Case II. Simulink scheme

First of all, the real and estimated trends of the two angles θ1 and θ2 have been
compared. As shown in Fig.7.5 and Fig.7.6, the observer perfectly accomplishes its
estimation task.

Simulation results 53

Figure 7.5: Case II. Real and estimate θ1 trend

Figure 7.6: Case II. Real and estimate θ2 trend

Moreover, it is visible that also in this case both angles perfectly reach the reference.
The same considerations on performances as in Case I are still valid here.

54 Chapter 7. Simulation results

7.3 Case III. Partial observability - UIO Observer

Based on the same discussion about observability presented in Case II, the state and
disturbance estimation is here realized by means of the UIO Observer, as represented in
the following Simulink scheme:

Figure 7.7: Case III. Simulink scheme

The simulation conditions for such model are the same as for the previous ones apart
from the presence of constant additive disturbances acting on both joints angles. As an
example, their values have been set respectively to 0.3 and -0.3.

As shown in Fig.7.8, the new observer perfectly accomplish the disturbance estima-
tion task.

Moreover, the comparison between the real and estimated trends of the two angles θ1

and θ2 is reported in Fig.7.9 and Fig.7.10, demonstrating once again a perfect estimation
and control of the head orientation.

Note that the reference value is reached by both joints angles, in spite of the distur-
bance, proving the validity of the proposed fault tolerant scheme.

Simulation results 55

Figure 7.8: Case III. Real and estimate θ2 trend

Figure 7.9: Case III. Real and estimate θ1 trend

56 Chapter 7. Simulation results

Figure 7.10: Case III. Real and estimate θ2 trend

57

Chapter 8

Socioeconomic impact

The present chapter deals with an overview of possible social and economics impacts of
introducing systems like the one proposed in this work into the market.

Rapid advances in technology have led to a surge of public interest in automation and
robotics. Indeed, the number of robots being used by businesses to boost productivity
has increased rapidly in recent years and there is no reason to believe that this pace of
robotization will begin to slow any time soon.

On the contrary, as the cost of robots continues to fall while their capabilities go
up, and with the robot density in most industries still relatively low, the International
Federation of Robotics (IFR) anticipates that yearly robot installations will continue to
grow at double-digit rates for the time being.

Considerations like those have lead part of public opinion and various scholars to
paint a dark picture of what could happen if machines are able to entirely substitute for
jobs, resulting in downward pressure on the wages of low-skilled workers and increasing
returns to owners of capital (Sachs and Kotlikoff 2012), (Berg, Buffie and Zanna 2016).
But even these scholars agree that the link between automation and wage inequality –
and the probability of a downward spiral – are not a given.

On the contrary, there is ample evidence that automation does not lead to job substi-
tution, but rather to a re-allocation of both jobs and tasks in which robots complement
and augment human labour by performing routine or dangerous tasks.

As a matter of fact, industrial robots have until recently been separated from humans

58 Chapter 8. Socioeconomic impact

-often by physical cages. Due to recent advances in technology, a newer trend, which
is also spilling out of the factory into non-manufacturing sectors and into the home,
is for collaborative robots that respond to and work alongside humans safely. These
collaborative robots are not replacing human work, but are increasing the productivity
of human workers, whilst simultaneously reducing the risk of workplace injury – for
example due to repetitive heavy lifting. Humans are still needed to carry out tasks such
as refinishing and quality check, together with those requiring high levels of creativity,
empathy, persuasion or an understanding of which knowledge to apply in which situation
to reach a productive decision.

As well as industrial robots, the category of service robots is predicted to grow rapidly
in both professional and domestic usage. The IFR projects an increase of 42 million
service robots for personal and domestic use between 2016 and 2019 in categories such
as floor cleaning, lawn-mowing, entertainment and elderly assistance.

Among others, health care is a particularly promising sector for service robots, with
applications ranging from exoskeletons that enable workers to deal ergonomically with
heavy loads as well as recover from injury or substitute for limbs that are no longer
mobile - to robot-assisted surgery.

Systems like the one proposed in this thesis perfectly fits in this scenario as they are
part of those technology advances above-mentioned, that are radically changing the way
people and machines interact.

Indeed, the collaborative environment described till now requires high level safety
technology that allows humans and robots to share the same workspace with less risk of
human injury.

From this perspective it is evident the essential role of sophisticated sensors, safety
controllers and communication networks embedded in the robot, that provide real-time
data allowing robots to automatically respond to potential incidents (such as coming
into contact with a person) or faults and, even, recover the system integrity.

59

Chapter 9

Project budget

In this chapter, we provide some considerations about the development and implementa-
tion of the control and fault estimation scheme proposed in this work from an economic
point of view. To this aim, a basic cost analysis is presented, considering a possible
introduction of such system in the market.

Note that, as a controller is already installed in TIAGO’s head, the robot is already
provided with the necessary sensors and actuators -i.e. encoders and motors for both
joints- by default. Hence, no hardware implementation cost has to be paid.

The unitary cost of the system would be composed by:

1. the cost of the master computer in which the algorithms runs (CPC): 800e

2. the cost of development, which is in turn composed by:

• Software development (CSW): 20000e

• Technical support (CT s): 3000e

• Tests (CT ests): 1000e

• General costs, such as water, electricity and more (CGen): 2000e

Thus, the total unitary cost of equipping a the head of a specimen of the robot
TIAGo with the proposed scheme can be calculated as:

Ctot = CPC + CSW + CTs + CTests + CGen

60 Chapter 9. Project budget

resulting in 27000e approximately.
Taking into account that the robot prize varies between 30000e and 60000e, de-

pending on the chosen version, the proposed system can be considered too expensive to
be implemented on a single specimen.

However, the system prize would be substantially reduced by equipping more robots
with it. Indeed, making a largely underestimate forecast of 100 specimens, the unitary
cost in Eq.9.1 would reduce to approximately 1000e, not affecting so significantly the
overall robot price.

Ctot = CPC +
CSW + CTs + CTests + CGen

100
(9.1)

Lastly, it is important underlying that in order to obtain a precise cost estimation,
a deeper cost analysis should be carried out.

61

Conclusions

In recent years the use of robots in our daily lives has increased rapidly and there is no
reason to believe that this pace of robotization will begin to slow any time soon.

As a matter of fact, they can easily accomplish many of those tasks that can be
referred to as the four Ds —too Dangerous, too Dull, too Dirty, and too Difficult— to
be done by humans.

For such reason, and thanks to recent advances in technology, collaborative robots,
that respond to and work alongside humans safely, are spilling out of the factory into
non-manufacturing sectors and into the home.

Nevertheless, robotic systems are prone to different types of faults, which have the
potential to affect the efficiency and the safety of the robot and/or its surroundings. That
is why, FDD (Fault Detection and Diagnosis) techniques are getting a more and more
prominent role in robotics, allowing humans and robots to share the same workspace
with less risk of human injury.

Based on such considerations, in this master thesis, the problem of supervision of
an humanoid robot has been addressed, taking as reference the mobile manipulator
robot TIAGo by PAL robotics. Particularly, the focus has been put on controlling and
supervising its head motion.

With this aim in mind, a dynamic model of the robot head has to be developed by
means of the Newton-Euler algorithm. It has been possible to apply such approach as
the robotic head in analysis has been likened to a 2-dof manipulator. The resulting
equations have been verified by implementing the above mentioned algorithm by means
of the MATLAB Robotic Toolbox.

Hence, an LPV feedback control scheme has been designed, together with the cor-

62 Chapter 9. Project budget

respondent feedforward compensation, in order to make the robotic head reaching a
reference orientation given in terms of the two joints angles.

Then, this scheme has been improved to account for a more realistic situation: the
lack of some of necessary sensors has been embedded into the control system by designing
an observer able to estimate the value of the not measurable states.

A further upgrade has been implemented later through the design of an LPV UIO
(Unkown Input Observer), in charge for the estimation of not only the not measurable
states, but also the eventually present fault/disturbance acting on the robot head.

At this point, a fault tolerant control scheme has been implemented to compen-
sate the faulty effect, detected and isolated by the fault detection and isolation system
explained till now.

9.1 Future work

During the development of this thesis many interesting follow-up have emerged.
Some of them are reported in the following as suggestions for possible enlargements

of this work:

• to go through the computations related to the system modeling by means of the
Lagrangian approach (see Section3.1), keeping in mind that a result analogous to
the Newton-Euler approach one is expected;

• to estimate and account for some frictional terms into the robot head dynamic
model;

• to expand the LPV model obtained in Chapter4, to encompass a third time-varying
parameter, for example the robot head mass. Such idea follows from the real need
of embedding a voice command apparatus on TIAGo head, which obviously would
modify the system mass;

• to investigate the impact of applying the filter proposed in Chapter5 in presence
of disturbances.

63

Bibliography

[1] World Robotics. 2010. [En ligne]. Retrieved from http://www.worldrobotics.org/.

[2] E. Guizzo. 2010. World robot population reaches 8.6 million. IEEE Spectrum.

[3] IFR. 2016. Executive Summary World Robotics. 2016 Service Robot. The Interna-
tional Federation of Robotics (IFR).

[4] IFR. 2016. Executive Summary World Robotics. 2016 Industrial Robots. The Inter-
national Federation of Robotics (IFR).

[5] G. Steinbauer. 2013. A survey about faults of robots used in robocup. In RoboCup
2012: Robot Soccer World Cup XVI. Springer, Berlin, 344–355.

[6] B. S. Dhillon. 1991. Robot Reliability and Safety. Springer.

[7] J.-H. Shin and J.-J. Lee. 1999. Fault detection and robust fault recovery control for
robot manipulators with actuator failures. In Proceedings of the IEEE International
Conference on Robotics and Automation.

[8] Eliahu Khalastchi and Meir Kalech. 2018.On Fault Detection and Diagnosis in
Robotic Systems. ACM Comput. Surv. 51, 1, Article 9 (January 2018), 24 pages.

[9] R. Brooks. 1986. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation 2, 14–23.

[10] http://tiago.pal-robotics.com

[11] I. Jolliffe. 2005. Principal Component Analysis. Wiley Online Library.

64 Chapter 9. BIBLIOGRAPHY

[12] R. Isermann. 2005. Model-based fault-detection and diagnosis—status and applica-
tions. Annual Reviews in Control 29, 71–85.

[13] R. Akerkar and P. Sajja. 2010. Knowledge-Based Systems. Jones and Bartlett Pub-
lishers.

[14] R. Isermann. 2005. Model-based fault-detection and diagnosis—status and applica-
tions. Annual Reviews in Control 29, 71–85.

[15] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran. 2013. An integrated
model-based diagnosis and repair architecture for ROS-based robot systems. In Pro-
ceedings of the International Conference on Robotics and Automation (ICRA’13).

[16] D. Stavrou, D. G. Eliades, C. G. Panayiotou, and M. M. Polycarpou. 2016. Fault
detection for service mobile robots using model-based method. Autonomous Robots
40, 383–394.

[17] M. Hashimoto, H. Kawashima, and F. Oba. 2003. A multi-model based fault de-
tection and diagnosis of internal sensors for mobile robot. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’03).

[18] R. Reiter. 1987. A theory of diagnosis from first principles. Artificial Intelligence
32, 57–95.

[19] V. J. Hodge and J. Austin. 2004. A survey of outlier detection methodologies.
Artificial Intelligence Review 22, 85–126.

[20] V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey.
ACM Computing Surveys (CSUR) 41, 15.

[21] G. Fagogenis, V. De Carolis, D. M. Lane. 2016. Online fault detection and model
adaptation for underwater vehicles in the case of thruster failures. In Proceedings
of the International Conference on Robotics and Automation (ICRA’16).

[22] E.Falotico et al. 2011. Using trunk compensation to model head stabilization during
locomotion

BIBLIOGRAPHY 65

[23] John J. Craig Introduction to Robotics

[24] Shamma, J. F. and J. R. Cloutier (1992). A linear parameter-varying approach to
gain scheduled missile autopilot design. In Proc. American Control Conf, Chicago,
IL, pp. 1317-1321.

[25] Apkarian, P. and P. Gahinet (1995). Self-scheduled H∞ Control of Linear
Parameter-varying Systems: a Design Example.

[26] Becker, G., A. Packard, D. Philbrick and G. Balas (1993). Control of parametrically-
dependent linear systems: a single quadratic Lyapunov approach. In Proc. American
Control Conf, San Francisco, CA, pp. 2795-2799.

	Abstract
	Index
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis objectives
	Thesis outline

	State of the art
	Robot model
	Lagrange approach
	Newton-Euler approach
	Forward kinematics
	Newton-Euler algorithm

	LPV Model
	LPV Control
	Fault/disturbance estimation
	Simulation results
	Case I. Full observability
	Case II. Partial observability
	Case III. Partial observability - UIO Observer

	Socioeconomic impact
	Project budget
	Conclusions
	Future work

	Bibliography

