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Abstract 
 
 The goal of this project is to develop a system to compute the position and 

orientation of an UAV using a monocular camera. To achieve that, the WOLF library will 

be used. WOLF is a library thought to solve generalized simultaneous localization and 

mapping (SLAM) and visual odometry problems. Derived classes will implement the 

algorithms needed to track features from the images obtained through the sensors. 

Constraints between the features and other features, or with landmarks, will be created to 

form a factor graph. An external solver will iterate to find the optimal state, by 

minimizing the cost associated to all the constraints. Ideally, our system can be used 

together with an inertial model measuring rotational velocities and translational 

accelerations, and tested with an  unmanned aerial vehicle (UAV) in simulation and in 

real.environments.
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Chapter 1 

Introduction 

           One of the biggest challenges for mobile robots is the ability to locate themselves 

in the world around them. The task may seem even trivial for us, but for a robot it's a 

really complex one. 

        The ability to know where you are gives you an additional insight on where 

everything else really is. Imagine entering a dark room, with only little rays of light 

illuminating the barely visible objects inside. Navigating through that space is more 

difficult  and often forces humans to seek auxiliary sensorial aid. 

        Mobile robots hardly have that luxury. They must make use of the sensors they 

have to know about their environment, as efficient as possible. And they must navigate 

through that environment, as safely as possible. Knowing what is around yourself, and 

your position in relation to them is the key to an efficient, yet safe, navigation. 

         The simultaneous localization and mapping (SLAM) problem tackles this issue. 

It tries to simultaneously locate itself while exploring the environment. The ramifications 

of this problem are many and diverse, as one can use many different sensors to explore 

the surroundings. Moreover, the movement of the robot can also vary, depending on the 

robot's design, and must be taken into account when computing the motion. 
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Chapter 2 

Objectives 

 
 The ultimate objective of this project is to develop and implement a visual-inertial 

odometry or SLAM system for a UAV platform. We however concentrate on a part of 

this objective, which is the implementation of a visual SLAM algorithm that accurately 

computes the motion of a robot by integrating information from a camera. 

 Contributions to the WOLF library (Windowed Localization Frames) will be 

developed to achieve the objectives of this project. This library is a collaborative project 

at the Institut de Robòtica i Informàtica Industrial (IRI) that solves various types of 

localization problems as the optimization of a network of geometric constraints, and can 

be used to find solutions to localization, SLAM, or odometry problems, using any kind of 

sensor modality. 

 The goal of this project is, by means of the WOLF library, to implement a system 

that is able to compute the position and orientation of an UAV via camera sensors. 
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Chapter 3 

State of the Art 

 The simultaneous localization and mapping (SLAM) problem tackles two 

different and complementary problems at the same time. A robot needs to explore an area 

often with a blank map, while trying to know its location as it moves. To a certain degree 

it is funny, as one of the tasks gets in the way of the other: you can’t explore and map the 

environment efficiently if you don’t know your position in this environment, but to be 

able to locate yourself requires exploring and mapping the surroundings. The problem of 

simultaneous localization and mapping is therefore central to autonomous navigation. 

We must approach this immense problem with a clear mindset: get real time 

execution and robustness. Among many other sensor modalities, which include laser 

scanners, sonar, radar, stereo cameras, or RGBD sensors, one of the most 

challenging  problems is to  perform localization and mapping using single cameras, 

extracting the features and applying a motion modelling. The Extended Kalman Filter 

(EKF) has been for many years the preferred method in many SLAM estimation 

problems like these, with good solutions in feature and landmark initialization   (Davison, 

2003). The EKF is able to fuse the motion estimation with the measurements, and obtain 

an accurate estimation of the position of the robot, as well as the landmark initialization 

(Roussillon et al., 2011). The monocular camera can be effectively used to estimate the 

motion by detecting and tracking features through the stream of images (Wang et al., 

2012), or relegate obtaining the motion to an inertial measurement unit (IMU). (Mostofi, 

Elhabiby, & El-Sheimy, 2014) 
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 A different, more modern approach, while also using cameras is to obtain visual 

motion estimation through keyframes, and perform a non-linear optimization over all the 

keyframes and landmarks (Konolige, Agrawal, & Solà, 2011). In these approaches, the 

algorithm selects on a reduced number of past frames to process, known as keyframes, 

which capture the structure of the trajectory of the robot, yet it is sparse enough to avoid 

highly redundant measurements in the system to solve. This, together with techniques for 

incrementally updating and solving the problem as the robot moves and gathers new 

information, makes this method fast and robust, and suitable for systems  that have fixed 

computational bounds, as it is often the case for mobile robots (Strasdat, Montiel, & 

Davison, 2010). This is the approach taken in this thesis.  
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Chapter 4 

WOLF 

4.1. Introduction to WOLF 

 To achieve the proposed objectives we will use a library created to solve 

localization problems in mobile robotics called WOLF (Windowed Localization Frames). 

This library is able to solve SLAM (Simultaneous Localization And Mapping), map-

based localization or visual odometry problems and, with that in mind, this project will 

use to its advantage the structure of WOLF and its resources. 

 The WOLF library is mainly a tool to organize and store the data of the problem. 

The state vector to be estimated is formed by keyframes, plus other states like landmarks 

or sensor parameters.  

 The main WOLF structure, called "WOLF tree", reproduces the elements of the 

robotic problem: The robot trajectory formed by keyframes, a potential wide range of 

sensors and a map with landmarks. With WOLF this data can be easily accessed and 

organized, albeit it requires external aid to successfully operate, with elements as input 

sensors (one or multiple sensors) or a solver to compute the result. WOLF may be 

interfaced with many kinds of solvers, including filters and nonlinear optimizers (such as 

a wide variety of Kalman Filters), and it also can be used with nonlinear optimizers. To 

interact with these solvers WOLF relegates the task to wrappers, so that the library is not 

bound to any solver.  The library currently provides a wrapper to the Google Ceres solver. 

 WOLF reproduces the elements of a robotic problem by means of a tree of base 

classes. These base classes form the main structure that can be derived to build the 
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particularizations needed for the problem, as the base functionality is embedded in the 

base classes, and anything derived from them can add whatever it is necessary.  

 One of the main advantages of using the WOLF tree is the connectivity along its 

branches, as it works in both directions: from parent to child and from child to parent. 

This way, the information of the parent elements in the branch can be accessed by any of 

the children. Moreover, this connectivity is highlighted when using constraints linking 

different parts of the tree, creating a graph of states. 

 This graph of states, linking state blocks with constraints is equivalent to the 

factor graph that would be solved non-linear optimization. The wrappers will translate the 

information stored in the WOLF tree into a factor graph that can be understood by the 

selected solver. 

 This chapter is meant to explain the WOLF library and its main classes and 

functions. Since, as it was previously said, WOLF is meant to be used as a generalized 

SLAM library, the main algorithm uses base classes. With that in mind we create derived 

ones, to suit the purposes of the problem at hand. In this project, and in order to explain 

without confusing terms, the specific explanation of the derived classes will be done in 

one of the following chapters, leaving the present one with the more general base classes.  

 

4.2. WOLF tree 

 The main structure of the library is called "WOLF tree". It manages and organizes 

the data of the problem and makes it easy to access. The tree in its entirety can be seen in 

Figure 1. 
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 Above all the other classes in the tree we find the Problem class. From there, the 

tree branches to organize the data, with each class of a branch containing more specific 

information than the previous one, making it accessible due to its disposition. 

 

4.2.1. Problem 

 While the Problem class is not the hierarchical upper class of the WOLF library, 

as there are others above it for managing purposes, it is the visible upper class from the 

user standpoint. It doesn't have much real impact in the development of the project, as its 

main functionality serves more to organize and manage the data of the lower classes, but 

there has to be a class at the top of problem, as well as a main class from which all 

derives. 

Figure 1 - The WOLF tree. 
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 From this class the three distinctive branches of the tree appear: The problem's 

Hardware, the robot's Trajectory, and a Map of Landmarks. 

 

4.2.2. Map 
 
 The Map class is merely a list of any kind of Landmarks. It stores them so that the 

solver can use the information of all the Landmarks (among other things) to calculate the 

position of the robot. Since it is such a simple class, it has two main functions aside the 

constructor: addLandmark and removeLandmark, which add or remove landmarks from 

the class.  

 

 

 

 

 

 Though it may seem that the Map class should incorporate some functions to 

actively interact with the landmarks it stores, that kind of operation has to be defined by 

the Processor and, thus, defined in the derived Processor class. (which will be explained 

later on). As mentioned before, the only objective of this class is to store Landmarks. Any 

operation or function using Landmarks in any way should be done elsewhere, by another 

class.  

Figure 2 - The Map branch Figure 2 - The Map branch 
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4.2.2.1.  Landmarks 

 The Landmark class defines a geometric feature of the environment. Though each 

derived class may have their own particular variables and functions, the base class has the 

following general elements:  

unsigned int landmark_id_; ///< landmark unique id 
LandmarkType type_id_;     ///< type of landmark. (types defined at wolf.h) 
LandmarkStatus status_; ///< status of the landmark. (types defined at wolf.h) 
TimeStamp stamp_;       ///< stamp of the creation of the landmark 
StateBlock* p_ptr_;     ///< Position state block pointer 
StateBlock* o_ptr_;     ///< Orientation state block pointer 

 
 

 The first fourth variables are just managing variables. The only purpose they 

serve is to assign a number to the landmark, specify the type of landmark it is (any 

derived class of landmark), its status and the time in which it was created. 

 The other two variables are more important. They are StateBlocks pointers which 

store the information concerning position and orientation of the landmark. The 

StateBlock is a partition of the state vector of the problem, and thus is meant to store the 

most important data in the project. 

 Aside these variables, there are also base functions. The most important ones are 

the ones to modify or read the values of the variables (such as setId or getPPtr ). 

 

4.2.3. Trajectory 

 The Trajectory branch holds all the data in respect of the movement of the robot. 

To do that, it has different levels of organization, essential to keep everything organized 

and to perform the calculation of the residual error. 
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 Since this class is one of the three main branches of the Problem class, most of its 

functions are used by the upper classes to manage the Frame class below, so all the 

information in this branch is sorted and organized for other classes to access. The two 

most used functions are getLastFramePtr, which will return a pointer to the last Frame, 

and getFrameListPrt, which returns a pointer to the list of Frames the Trajectory class 

holds. 

 

4.2.3.1. Frame 

 The Frame class is just below the Trajectory. The main function of this class is to 

keep the information of the robot state at different moments in time. For each given time 

Figure 3 - The Trajectory branch 
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a Frame is created, varying its type depending on the Processor: A 'NON-KEYFRAME' 

Frame object, and a special category of Frames labeled 'KEYFRAME'. The Processor 

class is the one who decides which Frames are made into a keyframe and which are not, 

and only keyframes are the ones entering in the optimization solver and thus used to 

solve the problem. 

unsigned int frame_id_;          ///< id of the frame 
FrameKeyType type_id_;         ///< type of frame. Either NON_KEY_FRAME or KEY_FRAME. 
(types defined at wolf.h) 
TimeStamp time_stamp_;   ///< frame time stamp 
StateStatus status_;     ///< status of the estimation of the frame state 
StateBlock* p_ptr_;      ///< Position state block pointer 
StateBlock* o_ptr_;      ///< Orientation state block pointer 
StateBlock* v_ptr_;      ///< Linear velocity state block pointer 

 

 Following the same structure as the Landmark class, most variables are used to 

store information about the Frame itself. There is a "id" to assign a number to any Frame, 

it is also defined which type of Frame it is (NON-KEYFRAME or KEYFRAME), as well 

as the moment in time in which said Frame is created and its current status. Those 

variables are used mostly by upper management classes. The most important variables in 

regard to this project are the three StateBlock pointers (the importance of this new class 

will be explained along the Solver, in Chapter 4.3). Each one of them returns a pointer to 

the position, orientation and linear velocity of the Frame, which is used by WOLF to 

solve the problem, as well as for correctly placing all the Capture and Feature objects 

below in the WOLF tree. 
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 Even though the majority of the functions of the class are to modify or to read any 

of the previously explained variables, there are also functions to access the rest of the 

WOLF tree. 

        TrajectoryBase* getTrajectoryPtr() const; 
 
        FrameBase* getPreviousFrame() const; 
        FrameBase* getNextFrame() const; 
 
        CaptureBaseList* getCaptureListPtr(); 
        CaptureBase* addCapture(CaptureBase* _capt_ptr); 
        void removeCapture(CaptureBaseIter& _capt_iter); 
        void removeCapture(CaptureBase* _capt_ptr); 
        CaptureBase* hasCaptureOf(const SensorBase* _sensor_ptr); 
 
        void getConstraintList(ConstraintBaseList & _ctr_list); 

 

 These functions allow the class to access not only the upper class (with 

getTrajectoryPtr ) and the predecessor and successor Frames (with getPreviousFrame 

and getNextFrame ), but to interact with both the immediately lower class Capture and 

the bottom class in this branch, called Constraint. From this class you can add new 

Captures to the list of Captures, or remove them as needed.  

 Since the Constraint class can establish correspondences with the Frame class, 

there is also a function which returns a list of these Constraints, but that will be explained 

in Chapter 4.2.3.4 . 
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4.2.3.2. Capture 

 In each Frame there is a list of Captures. The Capture class is an object with the 

purpose to store the raw data obtained by the sensor, as well as to maintain a list of 

Features found in said data. Since the type of the sensor can vary, this class will also 

change to accommodate. However, even though Captures of different sensors may 

present different structures, some variables and functions must remain unchanged to 

support the WOLF tree structure. 

! Variables 

unsigned int capture_id_; 
TimeStamp time_stamp_;  
SensorBase* sensor_ptr_;  
 
StateBlock* sensor_p_ptr_;  
StateBlock* sensor_o_ptr_;  

 

 It has an "id" to easily indentify the object, as most of the classes in the WOLF 

tree, and a time stamp with the time at which it was created. The base class also has a 

pointer to the Sensor class the Capture was extracted from, since the WOLF library 

allows for multiple sensors at the same time, as well as the pointer to said sensor position 

and orientation. 

! Functions 

 The functions used in the base class are mainly to read the previously explained 

variables. There are, however, some other functions that should be mentioned. 
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FeatureBase* addFeature(FeatureBase* _ft_ptr); 
FrameBase* getFramePtr() const; 
FeatureBaseList* getFeatureListPtr(); 
void getConstraintList(ConstraintBaseList & _ctr_list); 
virtual void process(); 
 

 From this class you can access the Frame class above with getFramePtr. Using 

the function addFeatures the class can add the Features found in the data stored in the 

class, and to the list of Features (getFeatureListPtr).  

 The Constraint class can't create correspondences with the Capture class (as it did 

with the Frame class), but there is a function which returns a list of these Constraints, 

which will be explained in Chapter 4.2.3.4 . 

 The last function, called "process" will require a more in-depth explanation: 

void CaptureBase::process(); 
{ 
         // Call all processors assigned to the sensor that captured this data 
        for (auto processor_iter = sensor_ptr_->getProcessorListPtr()->begin(); processor_iter !=     
sensor_ptr_->getProcessorListPtr()->end(); ++processor_iter) 
        { 
            (*processor_iter)->process(this); 
        } 
} 

 

 The main goal of the function is to initiate the processing of the raw data. Though 

there are multiple methods to initiate the Processor class, this one is the method which 

makes more sense. As you can see in the code, the Capture class will search for all the 

Processor classes inside the Sensor the data has been acquired from. The Processor will 

start analyzing the data. 
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 It may seem a convoluted method to initiate the process but in this way we assure 

that the process is called only when there is data to analyze, and in no other case. Further 

explanation on the process() function in the Process class, Chapter 4.2.4.2 . 

 

4.2.3.3. Feature 

 The main objective of the Feature class is to store a particular metric 

measurement from the raw data in the Capture class.  

! Variables 

unsigned int feature_id_; 

unsigned int track_id_; 

unsigned int landmark_id_; 

FeatureType type_id_; 

Eigen::VectorXs measurement_;                    

Eigen::MatrixXs measurement_covariance_;        

Eigen::MatrixXs measurement_sqrt_information_;         
 

 This class has three identification numbers. The first one, "feature id" is the one 

that will number itself, while the other two, "track id" and "landmark id", will be set if 

the feature has been tracked or successfully associated with a Landmark. There is also a 

variable to identify which type of Feature is being used, as it undoubtedly be one of the 

derived classes. 

 The Feature class stores information in the three different variables: the 

measurement, which is a vector of dynamic nature to adequate to whatever kind of value 

is sent by a derived class, a measurement covariance with the covariance of said 

measurement, and one variable called "measurement_sqrt_information_", which will 

operate the square root of the inverse of the covariance using Eigen functions. The 
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inverse of the covariance is called "Information", and that square root matrix can be 

defined by the Cholesky decomposition. The information matrix is needed when 

computing the residual error of the position of the robot, and since it's a constraint it is 

done in this particular class to ease the computational cost that would be calculating that 

value when it's requested. 

! Functions 

 As with most of the previous classes, the majority of the functions are to either to 

read or to modify the values in the variables. With the exception of those, the most 

important functions are these: 

ConstraintBase* addConstraint(ConstraintBase* _co_ptr); 

CaptureBase* getCapturePtr() const; 

FrameBase* getFramePtr() const; 

ConstraintBaseList* getConstraintListPtr(); 

void getConstraintList(ConstraintBaseList & _ctr_list); 
 

 These functions are, just as any other class, allowing connectivity in the WOLF 

tree. They allow the access to parent classes (such as Capture and Frame), as well as to 

interact with the child class, Constraint. More in detail of this last functionality, the 

Feature class is allowed to add Constraints, as well as to see the Constraint list. 

 

4.2.3.4. Constraint 

 The Constraint class' main purpose is to establish a correspondence between a 

Feature and another element from the WOLF tree, which can be a Frame, a Landmark or 

another Feature. To be more specific, the Constraint is a link between State Blocks to 



 
22

compute an error, and will be used by the solver to minimize the global error of the 

system, thus achieving the optimal state. This is one of the most important classes in the 

WOLF structure. It's the one to compute the residual error, and the code optimization 

when doing so is completely mandatory. 

! Variables 

unsigned int constraint_id_; 

ConstraintType type_id_;      ///< type of constraint (types defined at wolf.h) 

ConstraintCategory category_; ///< category of constraint (types defined at wolf.h) 

ConstraintStatus status_;     ///< status of constraint (types defined at wolf.h) 

bool apply_loss_function_;    ///< flag for applying loss function to this constraint 

FrameBase* frame_ptr_;        ///< FrameBase pointer (for category CTR_FRAME) 

FeatureBase* feature_ptr_;    ///< FeatureBase pointer (for category CTR_FEATURE) 

LandmarkBase* landmark_ptr_;  ///< LandmarkBase pointer (for category CTR_LANDMARK) 

 

 This class has five variables to store information about the Constraint, such as the 

"id", the type (to know which derived class is currently in use),  category (which 

identifies the type of correspondence made, varying between four categories: 

'ABSOLUTE', 'FRAME', 'FEATURE' and 'LANDMARK') and the status of the 

Constraint. There is also a boolean variable which decides if the Constraint will apply 

"loss function". 

 The other three variables have a pointer to each one of the three possible types of 

elements the Constraint can link the Feature to. 
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! Constructor 

 In this class there are four constructors: one for each type of category available 

(Frame, Feature or Landmark) as well as one for an 'ABSOLUTE' category, in which the 

Constraint is created but a correspondence is not made with another element. 

/** \brief Constructor of category CTR_ABSOLUTE **/ 

ConstraintBase(ConstraintType _tp, bool _apply_loss_function, ConstraintStatus 

_status); 

 

/** \brief Constructor of category CTR_FRAME **/ 

ConstraintBase(ConstraintType _tp, FrameBase* _frame_ptr, bool _apply_loss_function, 

ConstraintStatus _status); 

 

/** \brief Constructor of category CTR_FEATURE **/ 

ConstraintBase(ConstraintType _tp, FeatureBase* _feature_ptr, bool 

_apply_loss_function, ConstraintStatus _status); 

 

/** \brief Constructor of category CTR_LANDMARK **/ 

ConstraintBase(ConstraintType _tp, LandmarkBase* _landmark_ptr, bool 

_apply_loss_function, ConstraintStatus _status); 
 

 As a side note, it is important to mention that, in case the Constraint is about to be 

erased, or one of the two links in the Constraint is, the WOLF algorithm would check if 

the other part of the correspondence needs to be erased as well, to maintain the stability 

and the organization in the tree. This is automatically done by WOLF in their respective 

base class. 

! Functions 

 The functions in this class are meant to retrieve or to modify existing values of the 

variables, as well as pointers to all the possible categorized elements linked in the 

Constraint. 
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4.2.4. Hardware 

 Following the WOLF tree, the Hardware branch is the one immediately lower to 

Problem. It holds the necessary information (intrinsic and extrinsic parameters) of any 

sensor attached to the system, such as lasers, gps devices, both stereo and monocular 

cameras, etc. Further down in the branch we also have the processors, which will manage 

and oversee everything the sensors gather, and create the necessary connections between 

the data using elements from the WOLF tree that allows the problem to be solved. 

 

 

Figure 4 - The Hardware branch 
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4.2.4.1. Sensor 

 The Sensor sub-branch is immediately after the Hardware class. Its main function 

is to store all the essential values from the available sensors that will be needed during the 

execution of the algorithm, such as intrinsic and extrinsic parameters, among others. 

! Variables 

unsigned int sensor_id_;    

SensorType type_id_;        

StateBlock* p_ptr_;   

StateBlock* o_ptr_;   

StateBlock* intrinsic_ptr_; 

Eigen::VectorXs noise_std_;  

Eigen::MatrixXs noise_cov_;  
 

 As all the previous classes, this one has its own identification number, as well as a 

type which corresponds to the sensor that will be used. It has two State Blocks to keep the 

values of the position and orientation of the sensor, and also another one to store its 

intrinsic parameters. The sensor noise and the covariance of that noise are also taken into 

account. This way all the necessary information about the Sensor is available for any 

class that needs it. 

! Functions 

 The functions of the class are more or less standard, as the majority of them have 

the purpose of modifying or reading the stored value, such as getPPrt, which is used to 

return a pointer to the StateBlock position. 
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 The two functions that stand out in this class are the following: 

ProcessorBase* addProcessor(ProcessorBase* _proc_ptr); 

ProcessorBaseList* getProcessorListPtr(); 
 

 These functions allow for the Sensor to interact with the Processor class, in the 

way that it can add a Processor and get the list of Processors currently hanging from the 

sensor. 

 

4.2.4.2. Processor 

 The class below the Sensor class is that of the Processor. The importance of this 

class within the whole WOLF tree is incredibly high, as its main goal is to direct how the 

whole problem is solved. The class has to extract information from the sensors and 

analyze the result, so connections can be made in order to solve the problem. 

 If one doesn't know how the WOLF tree works, it may seem confusing why such 

an important class is "hanging" from the Sensor class, and not in a more higher position 

in the tree. The answer is simple: The methodology to analyze the problem is directly 

dependant on how to access that information, and the way to interact with the real 

environment is through the sensors. For example, the methodology a processor must 

follow to analyze a GPS sensor greatly differs from the methodology used in a camera 

sensor.  Also, the WOLF library is, as it has been mentioned before, a generalized way to 

approach SLAM problems. And, of course, a real world SLAM problem may be solved 

by one or more sensors at the same time. That has also to be taken into account, 

reinforcing the idea that the Processor class should be below the Sensor class.  
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 There are, however, some architecture decisions to note. Each Processor can only 

hang from one Sensor, as the procedure followed in this class is heavily influenced by the 

nature of the Sensor above. On the other hand, many Processors can hang from one 

Sensor (though not necessarily), as the Processor class envelops a methodology and, as 

such, there can be other methodologies for the same task. An example of this could be 

two different Processors hanged from the same camera sensor, with the peculiarity that 

each one of these two Processors has a different approach to the problem: one extracts 

points from the image, and the other extracts lines. Their procedures are different, but  the 

Sensor providing them with raw data is the same.  

! Variables 

unsigned int processor_id_; 

ProcessorType type_id_; 

Scalar time_tolerance_;   ///< self time tolerance for adding a capture into a frame 
 

 The main variables of this class are just identification numbers for either the 

Processor or the type of Processor in use. There is also a time tolerance variable to assure 

that one of the main functions, called  MakeFrame, is performing as it should. 

! Functions 

 This class is meant to be derived, and use the functions here to implement a more 

specific and adequate procedure for the whole problem. Therefore, most of the functions 

in this Processor Base class are "pure virtual", which means that even though they are 

created here, the functionality has to be implemented in the derived classes. This way, the 

base class forces the derived ones to do certain functions and protect the integrity of 

WOLF tree at the same time. 
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virtual void process(CaptureBase* _capture_ptr) = 0; 
virtual bool voteForKeyFrame() = 0; 
virtual bool permittedKeyFrame() final; 
virtual void makeFrame(CaptureBase* _capture_ptr, FrameKeyType _type = NON_KEY_FRAME); 

 

 The process function is, without a doubt, the main function of the whole WOLF 

tree. It is the one that orchestrates and commands the other classes so that a solution can 

be achieved. The derived classes must define there a methodology to analyze the data 

obtained from the sensors and, using the whole WOLF tree structure, create a graph of 

Constraints through the tree. 

 Another important function is the one called voteForKeyFrame. Keyframes are a 

very special subset of the Frame class. They are the only ones in which the external 

solver will focus to find a solution. Therefore, a nice strategy must be implemented in the 

derived classes to decide when a new keyframe must be created. It can be simple or really 

complex, but the function must be there to decide, hence making it a pure virtual 

function. 

 Along with that function there is another called permittedKeyFrame, the purpose 

of which is to simply dictate if a keyframe can be created or not. It it's not allowed in this 

function, even if voteForKeyFrame decides that it is needed, it won't be created. 

 The makeFrame function is quite straightforward in its main purpose: create a 

new Frame. It is important to mention that, due to the way the WOLF tree is conceived, a 

Frame has to have a Capture hanging from it. The Frame must have something below to 

be created. If there is no data, there is no reason to create a new Frame. That is why there 
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is a Capture class as input in the function, as well as the type of Frame we want to create 

(by default it is set at 'NON-KEYFRAME'). 

 

4.3. Solver 

 To find a solution to the problem WOLF uses an external solver. It is not part of 

the library itself, but works alongside with it, as it's a necessary element in this non-linear 

optimization problem. The wrapper will interact between the solver and the WOLF 

structure, to make one independent from the other. 

 

Figure 5 - Outside of WOLF 

 The WOLF tree interaction with the solver is done though State Blocks and 

Constraints. As it has been mentioned before, the State Blocks are partitions of the state 

vector, containing all the important information of this project, while the Constraints are 

just links between the State Blocks. 
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 In the following factor graph the round nodes, labelled from 0 to 7 in the Figure, 

are State Blocks, while in square nodes, labelled from 1 to 10, represents the Constraints.  

 

Figure 6 - Factor Graph of StateBlocks and Constraints 

 For each of the Constraints, a residual is calculated, using information from the 

State Blocks and measurements. This residual, also known as "expectation error", is used 

by the solver in order to find the overall state that minimizes it, obtaining the optimal 

state, which is the best available solution for the problem. The solver's procedure to solve 

this problem is it follows: 

1. Linearize all the Constraints 

2. Compute an optimal state correction of the linearized system 

3. Update the state with the correction step 

4. Iterate from 1 until convergence 
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 The operations 2 to 4 are done automatically by the solver, but the task to 

linearize the Constraints must be done by WOLF. At each iteration the solver will ask to 

each constraint: 

1. A value of the Constraint residual 

2. If applicable, a Jacobian of said residual, with respect to each of the State Blocks. 

 The math behind the calculation of the residual in the Constraint is fairly simple, 

as WOLF organizes and stores the data to have an easy access to the measurements and 

State Blocks needed for that. 

4.4. Interaction between the tree 

 As the classes and functions used by the base WOLF tree have now been 

explained, a summary of the methodology of WOLF should be in order.  

 

Figure 7 - Illustration of a working WOLF test 
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 The whole process starts when a Capture is introduced by one of the Sensors. It is 

stored below a Frame along with the position and orientation of the robot at that 

particular moment. At the umpteenth iteration we will have a Trajectory of Frames, just 

as the one in Figure 7. 

 To better understand the relationship between the tree, we will explain an 

example of a mobile robot detecting Landmarks.  

 In every iteration, the Capture is analyzed by the Processor, finding recognizable 

Features in it. Landmarks are made from those Features and, in each passing iteration, 

those Landmarks may (or may not) be found in the Capture. Every time they are 

recognized, a Constraint is made between the Feature and the Landmark. 

 When the Processor so decides it, some of the Frames are made into keyframes. 

When the time is right, those are sent to the external solver, which asks for the residual in 

each of the created Constraints. If the solver converges, that means that the residual has 

been minimized, and an optimal state has been found, localizing as best as it can the robot 

and the Landmarks. This gives more precise calculations for further iterations. 

 

  



 
33

Chapter 5  

Visual SLAM contributions 

5.1. Introduction 

 In mobile robotics, the SLAM problem can be summarized as the localization of 

the robot and, at the same time, the mapping of the environment around it. To fulfil that 

objective sensors are needed to gather information about the world. In the current project 

we will work with a camera sensor, so certain visual elements must be included to 

properly analyze the image. Moreover, we must specify the way in which we map the 

environment, and so, there must be an explanation of how we parametrize a Landmark. 

 

5.2. Vision 

 In this project we will be using a monocular camera to recognize the environment 

and to create and track either Landmarks and Features. The sensor supplying the raw data 

will be a camera and, in consequence, we will need to analyze images and extract 

keypoints to create Features. 

 

5.2.1. Tracker 

 Among the many keypoints detectors there are available nowadays, four names 

stood out from the rest: SIFT, SURF, ORB and BRISK. The first two have been used for 

many years, and give really high performance with remarkable and detailed keypoints, 

albeit consuming a lot of  computational cost in the process. The other two, ORB and 

BRISK are relatively new and, with a slightly lesser keypoint detection performance, they 

offer a dramatically faster alternative. 
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 It was decided to use ORB and BRISK instead of the trustworthy alternative to 

prioritize speed, as the keypoint detection is just one of the many parts of the project, and 

the solver iterations already consume large quantities of the computational time. 

Moreover, they are available in the OpenCV library and come with wide range of 

functions and methods to apply keypoint detection, description and matching. 

! Detection 

 The BRISK keypoint detector is based on another keypoint detector technique 

called FAST. It looks for a maxima in the image plane and, to achieve invariance to 

scale, also in the scale-space using as threshold the score of the FAST detector, 

measuring the saliency of the keypoint. (Leutenegger, Chli, & Siegwart)  

 

Figure 8 - BRISK using FAST to obtain a keypoint 
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 BRISK uses a 9-16 mask to perform the detection, which means that in a circle of 

16 pixels at least 9 in consecutive form have to be either darker or brighter than the 

analyzed point. If that criterion is validated BRISK will search in the above and below 

layer, in which the values have to be lower too. There layers are called octaves,  and are 

created from the original image, each one being a half-sample of the previous one. 

 The ORB detector also uses FAST to detect keypoints, combined with the Harris 

corner measure. A scale pyramid of the image is created to produce FAST features in 

each one of the layers of said pyramid, previously filtered by Harris. If the keypoints 

have a FAST value over a set threshold, they are chosen. Then, using a technique called 

"intensity centroid" they are able to find the orientation of the feature, which will be of 

use when describing the keypoints. (Rublee, Rabaud, Konolige, & Bradski) 

 In the project, as the OpenCV library has these two detectors, and just using the 

function detect with an image (or a region of interest of that image) it will find a list of 

keypoints. 

! Description 

 The BRISK descriptor uses by default a circular sampling pattern of 60 points and 

it separates them into two subsets: long-distance and short-distance pairs. It computes the 

local gradient for the long-distance pairs and sums the gradient to find the orientation of 

the feature. Then rotates the short-distance pairs the same amount and constructs a binary 

operator using these pairs. The description of a keypoint in BRISK presented as a string 

of 512 bits. 
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Figure 9 - BRISK default descriptor 

 To describe the points ORB uses the BRIEF descriptor. With the orientation 

obtained in the detection, they rotate a random set of points and then generate a binary 

descriptor. At the end, the ORB descriptor is a string of 256 bits. 

 In OpenCV, as these two descriptors are included, just using the function compute 

with an image and a list of keypoints returns a matrix of descriptors, each row 

representing the descriptor of a keypoint. 

! Matching 

 The matching procedure in both BRISK and ORB is quite simple. As both are 

strings of bits computing the Hamming distance is enough. The result of this computation 

represents the dissimilarity between two descriptions. Using the Hamming distance is 

equivalent to applying the XOR operation bit by bit on the two compared descriptors, and 

count the outcome. 
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 In OpenCV, the function match (although previously parametrized) can compute 

the Hamming distance between sets of descriptors. 

 

5.2.2. Active Search 

 Even with those vision systems, tracking is not a simple thing to achieve. 

Analyzing the whole image may be a computational cost far too high for a robotic 

problem, especially if the characteristics of the image are not known when designing it. 

And, since WOLF is designed to work with any kind of sensor, it may work with any 

kind of image. Therefore, we must localize and define where to search in order to reduce 

the computational time. To do that we will use Active Search. 

 Originally designed in the RTSLAM project, from LASS, the Active Search class 

was adapted to WOLF by a Dinesh Atchuthan, a doctoral student. 

 The purpose of the Active Search is to search in an orderly manner the whole 

image, to optimize the search and find more distinctive and useful features to track. To do 

that the Active Search uses a tessellation grid, as shown in the Figure below. 



 Having a grid clearly defines a space in which to look for features. Despite that, 

there are sometimes problems with 

decided to deal with that using an offset o

grid moves a certain amount, in a random manner.

 Another one of the particularizations of the Action Search is t

than the image, as you can see in the Figure above, visualizing with two grids at two 

different frames. Only the rectangle formed by cells of the grid that are inside the image 

will be used to search for features, to avoid searching 

 

Figure 10 - Tesselation grid 

Having a grid clearly defines a space in which to look for features. Despite that, 

there are sometimes problems with dead zones and cell edges, and Active Search has 

decided to deal with that using an offset of a fraction of a cell size. At each iteration the 

grid moves a certain amount, in a random manner. 

Another one of the particularizations of the Action Search is that the grid is larger 

than the image, as you can see in the Figure above, visualizing with two grids at two 

different frames. Only the rectangle formed by cells of the grid that are inside the image 

will be used to search for features, to avoid searching for a point outside the image edges.
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Having a grid clearly defines a space in which to look for features. Despite that, 

dead zones and cell edges, and Active Search has 

a fraction of a cell size. At each iteration the 

hat the grid is larger 

than the image, as you can see in the Figure above, visualizing with two grids at two 

different frames. Only the rectangle formed by cells of the grid that are inside the image 

for a point outside the image edges. 



 As it can be seen in the Figure above, the projected landmarks are dispersed 

throughout the image. Some are inside the inner grid and thus are treated, and som

not and are discarded. The inner grid takes into account where are projected landmarks 

that "occupy" the cell. That way, when searching for new salient points to track, it will do 

so in cells which are classified as "

than one point in each cell, allowing the search in occupied cells, in case just one 

projection per cell is not enough.

 The empty cell selected to be searched has its own region of interest, meaning that 

not all the space in the cell 

between new and existing features. Of course, this separation is parametrizable.

 

 

Figure 11 - Tesselation example 

As it can be seen in the Figure above, the projected landmarks are dispersed 

. Some are inside the inner grid and thus are treated, and som

not and are discarded. The inner grid takes into account where are projected landmarks 

" the cell. That way, when searching for new salient points to track, it will do 

so in cells which are classified as "empty". There is the option, of course, to look for more 

than one point in each cell, allowing the search in occupied cells, in case just one 

projection per cell is not enough. 

The empty cell selected to be searched has its own region of interest, meaning that 

cell is searched, in order to guarantee a minimum separation 

between new and existing features. Of course, this separation is parametrizable.

39

 

As it can be seen in the Figure above, the projected landmarks are dispersed 

. Some are inside the inner grid and thus are treated, and some are 

not and are discarded. The inner grid takes into account where are projected landmarks 

" the cell. That way, when searching for new salient points to track, it will do 

ourse, to look for more 

than one point in each cell, allowing the search in occupied cells, in case just one 

The empty cell selected to be searched has its own region of interest, meaning that 

is searched, in order to guarantee a minimum separation 

between new and existing features. Of course, this separation is parametrizable. 
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5.3. Landmark parametrization: Anchored Homogeneous Point (AHP) 

 Projecting a 3D point into a 2D space is somewhat trivial. The real issue is trying 

to back-project a 2D point to a 3D environment, as the depth is lost and guessing it 

among the infinite line of possible position is not practical. Amongst the techniques 

available to do that task, this project selected the inverse distance approach. 

! Inverse Distance 

 The methodology of the inverse distance technique (Montiel, Civera, & Davison, 

2006) is based on the following principle: to back-project a 2D point into a 3D space you 

need not the distance required to reach that point (in the position it would have should the 

backprojection is successfully performed), but the inverse of the distance. Using only the 

distance will result in an infinite interval of probable solutions along an infinite line (from 

d_min to infinity), and only through triangulation one can begin to form a landmark with 

an accurate and successful position. If, instead, we use the inverse distance technique, 

that infinite interval is becomes bounded (from zero to 1/d_min), and is relatively small 

and tractable. With an appropriate first depth guess, the system can start forming 

landmarks in the first iteration. More information about this technique in (Solà, Vidal-

Calleja, Civera, & Martinez-Montiel, 2011). 

 To use this technique in this project it was convenient to use a more complex 

solution than the usual inverse-distance 3D point, but one that would adapt better to our 

key-frame-based representation of the problem. We started from the point description 

known as the Anchored Homogeneous Point (AHP) (Solà, Vidal-Calleja, Civera, & 
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Martinez-Montiel, Impact of landmark parametrization on monocular EKF-SLAM with 

points and lines, 2011), which is very close to the inverse-depth point. 

! Anchored Homogeneous Point 

 To explain the Anchored Homogeneous Point (AHP from now on) we should first 

take a look to another well known point descriptor: the Homogeneous Point. The 

parametrization here consists in four variables: three of them defining a vector, with the 

remaining one as and scalar. Should we divide the vector by this scalar we would have a 

3D Euclidean point. 

!"# = % = &'
% ( = )'* '+ ', %-. ( 1 ) 

 If we are to apply the inverse distance technique, the 3D vector has to be an 

unitary vector, while the scalar parameter will be our estimation of the inverse of the 

distance, to make this vector homogeneous. 

 By that description, the AHP may seem quite similar to an homogeneous point 

but, in this case, it's defined by more parameters than just four. In the AHP there is an 

anchor. As you can see in the picture below, the homogeneous unitary vector is 

referenced to another point in space different than its origin, called anchor. In this project, 

the anchor of the homogeneous unitary vector is the origin of the camera reference frame 

at the time of landmark initialization. 
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Figure 12 - Homogeneous Anchored Point (AHP) 

 And so, the AHP parametrization is defined by seven variables, three to define the 

anchor, and the remaining four to define the homogeneous unitary vector. 

!/"# = 0
12
'
%

3 = )42 52 62 '* '+ ', %-. ( 2 ) 

! Adaptation of the AHP to key-frame based SLAM 

 However, the previous definition, which was designed to operate in EKF-

SLAM,  is only valid if the homogeneous unitary vector is defined in the world reference. 

In key-frame-based systems, the anchor exists in the problem representation as one of the 

keyframes, and it is convenient to used to avoid redundancy. As the point is called 

homogeneous "anchor" point, we can assume the unitary vector is expressed in the 

camera reference. The camera reference, which acts as the anchor frame, can be 

computed from the composition of the robot frame in world reference (thus the key-frame 
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at the time of landmark initialization), with the camera frame in robot reference. 

Therefore, our landmark parametrization would look like this: 

!/"# = ) 7 9 :
 ; 9 :

 7 : <
 ; : <

 ' = %-. ( 3 ) 

where [ 7 9 : ; 9 :  ] are position and orientation quaternion of the robot, at the time of 

initialization, in world frame, and are encoded in the corresponding key-frame; 

[ 7 : <
 ; : <

  ] are position and orientation of the camera in robot frame, and constitute the 

extrinsic sensor parameters, which we consider constant and known; cm is a vector 

defining the line of sight to the landmark expressed in camera frame; and ρ is the inverse-

distance parameter. The tuple [  ' = % ] constitutes the homogeneous vector in the 

anchor (i.e. camera) frame, while [ 7 9 : ; 9 :      7 : <
 ; : <

  ] defines the anchor frame. 

 This way, the anchor is correctly defined, while using the inverse distance 

technique for landmark parametrization. 
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Chapter 6  

Implementation in WOLF 

 Two algorithms were developed implementing the WOLF structure. As the 

specifications of the project are a requirement for both of these algorithms, they have 

many similarities. Both have  images in which to extract features, provided by a camera 

sensor. However, they are ultimately defined by how they compute the residual in the 

Constraint class: Feature against Feature and Feature against Landmark.  

• Feature against Feature 

 

Figure 13 - Feature against Feature algorithm 
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 The general procedure is virtually the same as explained in Chapter 4.4, which 

makes sense, as we are only applying classes derived from the base ones in the WOLF 

tree. Since this project uses a monocular camera to acquire images, analyzing them for 

feature detection, there will be a Sensor Camera, a Capture Image, and a Feature Point 

Image class, respectively. This algorithm also introduces the Processor Image Feature 

and Constraint Epipolar classes, which will detect, track and make constraints from one 

Feature to another.  

• Feature against Landmark 

 

Figure 14 - Feature to Landmark algorithm 
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 Since the problem is the same for both algorithms, many similarities will appear 

in their procedures, and in the classes used to solve the problem. For example, Sensor 

Camera, Capture Image and Feature Point Image are also needed in this algorithm, as 

the approach taken requires Features obtained from a monocular camera. Even the 

Processor Image Landmark has many similar functionalities with the previous Processor. 

The main difference, however, is that this algorithm uses the Landmark AHP class, that 

defines a 3D point in the environment, to initialize Landmarks and to make constraints 

against Features in the class Constraint AHP. 

 

 During this chapter, the main classes in both of those algorithms will be 

explained, along with their main functionality, so that the procedure is properly 

understood. 

 
 
6.1. pinholeTools 

 The pinholeTools was originally a class made by Joan Solà in the RTSLAM 

project, from LAAS. It has been adapted into WOLF. Its main purpose is to perform 

projection of a 3D point into a 2D plane, as well as the inverse method called back-

projection. 

 The main functions of this class are explained below in pairs, as most of the class 

contains a method and its inverse. The mathematic background of these functions is 

explained in the appendix. 

 



 
47

• projectPointToNormalizedPlane & backprojectPointFromNormalizedPlane 

 The projectPointToNormalizedPlane function performs the pinhole 

canonical projection. When introduced a  3D point, returns a 2D point in a 

normalized plane. 

 On the other side, the backprojectPointFromNormalizedPlane does the 

inverse, a canonical backprojection. When given a 2D point in the image plane it 

returns the 3D backprojected point. It must be specified a depth parameter, which 

will correspond to the missing third dimension, which by default is 1. 

 

• distortFactor 

 Using the formula of the distortion model, and the distortion parameters 

introduced, returns the distort factor, so the point can be modified according with 

the model. This function can also be used to compute the correctionFactor, which 

is the inverse method. 

 

• computeCorrectionModel 

 With the distortion parameters, which correspond to the distortion model, 

the inverse parameters can be obtained to compute the distortion correction model.  

 

• distortPoint & undistortPoint 

 In the distortPoint, using the distortFactor, this function will apply radial 

distortion to a 2D point. 
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 In the inverse function, undistortPoint, and with the correction parameters 

obtained through distortFactor, the function will correct the distortion applied to a 

2D point. 

 

• pixellizePoint & depixellizePoint 

 pixellizePoint uses the intrinsic parameters of the camera to transform a 

2D point into a pixel of the image, whereas in depixellizePoint, a pixel of an 

image is transformed into a 2D point in a normalized plane. 

 

• projectPoint & backprojectPoint 

 The projectPoint function projects a 3D point into a pinhole camera with 

radial distortion. To do so, it computes the previous functions 

projectPointToNormalizedPlane, distortPoint and pixellizePoint. 

 The backprojectPoint, as the inverse function, does the transformation in 

the other direction. It backprojects a pixel from a pinhole camera with radial 

distortion into a 3D point, correcting the distortion in the process. 

• isInRoi & isInImage 

 Both of these functions check if a 2D point is in the designated region of 

interest of an image, or in the image itself. 
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6.2. Sensor Camera 

 In the current project only one sensor will be used: a monocular camera. 

Therefore the intrinsic and extrinsic parameters are introduced in the problem through the 

derived class Sensor Camera. These intrinsic parameters consist in values of the inner 

calculations made by the camera, used to successfully project any 3D point into the 

image plain. There are also the distortion parameters, which are needed to calculate the 

radial distortion the image may have, and their counterpart, the correction parameters, 

used to correct a radially distorted image.  

 The extrinsic parameters describe the position and orientation the camera has in 

relation to the robot, as these values are needed to perform changes of reference frames 

absolutely essential to the process.  

! Variables 

int img_width_; 

int img_height_; 

Eigen::VectorXs distortion_; 

Eigen::VectorXs correction_; 
 

 The class has to store the width and height of the image, as well as three main 

parameters for the pinhole model: the intrinsic, distortion and correction parameters. 

These values are stored because they need to be accessed when performing the 

projections of points from 3D to 2D. The intrinsic parameters are actually stored in a 

variable from the base class, as it was already planned to be there from the start. 

 

 



 
50

! Constructor 

SensorCamera::SensorCamera(const Eigen::VectorXs& _extrinsics, const IntrinsicsCamera* 

_intrinsics_ptr) : SensorBase(SEN_CAMERA, "CAMERA", nullptr, nullptr, nullptr, 2), 
                img_width_(_intrinsics_ptr->width), // 
                img_height_(_intrinsics_ptr->height), // 
                distortion_(_intrinsics_ptr->distortion), // 
                correction_(distortion_.size()) // 
{ 

   assert(_extrinsics.size()==7 && "Wrong intrinsics vector size. Should be 7 for 3D"); 

   p_ptr_ = new StateBlock(_extrinsics.head(3)); 

   o_ptr_ = new StateQuaternion(_extrinsics.tail(4)); 

   intrinsic_ptr_ = new StateBlock(_intrinsics_ptr->pinhole_model); 

} 
 

 The constructor receives intrinsic and extrinsic parameters, as expected. However, 

as the input parameters are not in the usual State Block form, some of the variables have 

to be assigned later. This is the case of the position and orientation, that are sent in the 

form of an Eigen vector (extrinsic parameters), and have to be split in order to be 

assigned correctly. Note that the orientation is stored as a State Quaternion, a class very 

similar to a State Block which specializes in quaternions.  

6.3. Capture Image 

 Capture Image is a derived class which stores image raw data. In this project, 

such data is acquired by the Sensor Camera class. 

! Variables 

cv::Mat image_; 

cv::Mat descriptors_; 

std::vector<cv::KeyPoint> keypoints_; 
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 This class stores the image in matrix form, with keypoints and descriptors defined 

in the appropriate OpenCV format, so they can be used with other OpenCV functions 

with ease. 

 

6.4. Feature Point Image 

 The class Feature Point Image is derived from the Feature Base class. It has all 

the functionality of that class while also implementing all the necessary functions and 

variables to store the information of a point in 2D space.  

! Variables 

cv::KeyPoint keypoint_; 

cv::Mat descriptor_; 

bool is_known_; 
 

 

• cv::Keypoint keypoint_ 

  In the explanation of the base class it was mentioned that it needed a 

measurement, which was designed as an Eigen vector of 2 dimensions. The 

tracker used in this project already uses a specific element for that purpose, called 

cv::keypoint. Moreover, most of the OpenCV functions in relation with vision use 

it, so it made sense to maintain it in detriment of the Eigen vector to store point 

data. 
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• cv::Mat descriptor_ 

  As was already mentioned in Chapter 5.2.1, a point must have a descriptor 

associated with it. It is indispensable if we are to compare the point, and to track it, 

so it must be stored as well. 

 

• bool is_known_ 

  The purpose of this flag is to know if the tracked feature is a "new" feature 

or a "known" one. More information about this feature in the implementation of 

both Processor classes. 

 

! Constructor 

 This class has two practical constructors (in reality it has more for debugging 

purposes),  each one is used in one of the two Processors explained in this project. The 

first constructor is mainly used by the Processor Image Feature class, which uses 

Features to compare other Features. 



 
53

FeaturePointImage(const cv::KeyPoint& _keypoint, 

                  const cv::Mat& _descriptor, bool _is_known) : 

        FeatureBase(FEATURE_POINT_IMAGE, "POINT IMAGE", Eigen::Vector2s::Zero(),  

                    Eigen::Matrix2s::Identity()), 

        keypoint_(_keypoint), 

        descriptor_(_descriptor) 

{ 

        measurement_(0) = Scalar(_keypoint.pt.x); 

        measurement_(1) = Scalar(_keypoint.pt.y); 

        is_known_=_is_known; 

} 
 

  

 The input parameters of this constructor are the three main variables previously 

explained: the point information, the descriptor associated with that point, and a boolean 

variable which identifies the feature as a "know" or "new" feature.  

 The main values are stored in the proper variables of the derived class, and the 

pertinent information is send to the parent class in its own constructor. Notice that the 

values sent in the base constructor are void of meaning, only to assign the proper value of 

the keypoint in the measurement later, as that assignation could not be done in the 

constructor line. 

 The second constructor is mainly used by the Processor Image Landmark class: 
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FeaturePointImage(const cv::KeyPoint& _keypoint, 

               const cv::Mat& _descriptor, const Eigen::Matrix2s& _meas_covariance) : 

               FeatureBase(FEATURE_POINT_IMAGE, "POINT IMAGE",  

               Eigen::Vector2s::Zero(), _meas_covariance), 

               keypoint_(_keypoint), descriptor_(_descriptor) 

{ 

      measurement_(0) = Scalar(_keypoint.pt.x); 

      measurement_(1) = Scalar(_keypoint.pt.y); 

} 
 

 As it can be seen, the constructor is similar to the previous one. There are two 

differences, however. First, the variable is_known is not included. The Processor uses 

Landmarks, and a whole different approach is needed to operate with the Features, so it is 

no longer necessary to know if the feature is "known" or "new". Moreover, the input 

parameters of the constructor have included the measure covariance, which is properly 

sent to the parent class, and is needed to calculate a solution of this problem. 

6.5. Landmark AHP 

 The main function of this class is to store Landmarks using the "Anchored 

Homogeneous Point (AHP)" parametrization (explained in chapter 5.3) and all auxiliary 

variables it may need. 

! Variables 

cv::Mat cv_descriptor_; 

FrameBase* anchor_frame_; 

SensorBase* anchor_sensor_; 
 

 As it can be seen, there is not even one variable in this class to store the point (or, 

in this case, the homogeneous unitary vector). The information arrives as an input 

variable, but since it's a derived class it is sent to the Landmark Base class, as there are 
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means to store the value there (seen in Chapter 4.2.2.1). Instead, the three variables are 

used to keep data that the base class can't store, as its related on how the point is 

described.  

 When a Landmark is created the descriptor of the Feature is stored. That way, 

when we perform the tracking of said Landmark, we will have the original descriptor in 

which it was found,  providing helpful information in deciding whether the Feature found 

resembles the Landmark projection or not. 

 Of course, if we are to implement the AHP parametrization, the anchor 

information must be preserved to successfully describe the point. With that in mind, we 

store the Frame in which the Landmark was created, as it’s a necessary variable to 

compute both the position and orientation of said Landmark. Another important variable 

is the Sensor Base pointer, who will provide the intrinsic and extrinsic parameters of the 

Sensor, essential in the computation of the residual in the Constraint class. 

! Constructor 

LandmarkAHP::LandmarkAHP(Eigen::Vector4s _position_homogeneous, 

                         FrameBase* _anchor_frame, 

                         SensorBase* _anchor_sensor, 

                         cv::Mat _2D_descriptor) : 

    LandmarkBase(LANDMARK_AHP, "AHP", new StateHomogeneous3D(_position_homogeneous)), 

    cv_descriptor_(_2D_descriptor.clone()), 

    anchor_frame_(_anchor_frame), 

    anchor_sensor_(_anchor_sensor) 

{ 

} 
 

 The input parameters are the expected ones: the homogeneous vector, the Frame 

with the position and orientation, and the Sensor frame. All the assignations are also 
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expected, with one exception: WOLF has taken into account the possibility of having a 

3D homogeneous vector, so if given a four vector with the correct values all the 

necessary steps of conversion (so that the solver can understand that it's not an ordinary 

State Block) will be handled automatically.  

 

6.6. Constraint AHP 

 This Constraint AHP class calculates the residual error between a Feature and a 

Landmark, with the particularization that the Landmark is defined as an "Anchored 

Homogeneous Point". Therefore, we will be comparing the projection of a Landmark in a 

2D plane against its measurement. 

 This class is derived from Constraint Sparse, which at the same time is a derived 

class of Constraint Base. The Sparse class contains the operations needed to aid when 

solving a sparse non-linear optimization problem such as this. 

! Variables 

Eigen::Vector4s intrinsics_; 

Eigen::Vector3s extrinsics_p_; 

Eigen::Vector4s extrinsics_o_; 

Eigen::Vector3s anchor_p_; 

Eigen::Vector4s anchor_o_; 
 

 The main variables of this class are just to store the parameters needed to 

calculate the residual, such as the intrinsic and extrinsic parameters of the camera (which 

are copied here only for speed reasons), and the position and orientation of the robot. 

! Constructor 
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 Before explaining the constructor of this class, we should take into account some 

of the parameters needed by the Constraint Sparse. 

class ConstraintImage : public ConstraintSparse<2, 3, 4, 3, 4, 4> 
 

 When creating the class, we must specify a numerical set of parameters to the 

Sparse class. The first of the values is the size of the residual that is going to be 

calculated. Since we will be comparing the projection of a Landmark and a measurement 

on an image plane, the residual will have a size of two. 

 The rest of the input parameters also correspond to the sizes of the elements the 

solver must take into account when solving the problem. In this particular problem,  these 

parameters correspond to the position and orientation of the current robot Frame, the 

position and orientation of the anchor frame and the Landmark homogeneous unitary 

vector. The positions of either the camera and the robot have a size of 3, and their 

orientations have 4 (as they are quaternions). The homogeneous unitary vector, as seen in 

Chapter 5.3, has also a size of 4. 
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static const unsigned int N_BLOCKS = 5;  
 

ConstraintImage(FeatureBase* _ftr_ptr, FrameBase* _frame_ptr,  

               LandmarkAHP* _landmark_ptr, 
               bool _apply_loss_function = false,  

               ConstraintStatus _status = CTR_ACTIVE) : 
        ConstraintSparse<2, 3, 4, 3, 4, 4>(CTR_AHP, _landmark_ptr,  

               _apply_loss_function, _status, 
               _frame_ptr->getPPtr(), 
               _frame_ptr->getOPtr(), 

               _landmark_ptr->getAnchorFrame()->getPPtr(), 

               _landmark_ptr->getAnchorFrame()->getOPtr(), 

               _landmark_ptr->getPPtr()), 

        intrinsics_(_ftr_ptr->getCapturePtr()->getSensorPtr()->getIntrinsicPtr()- 

               >getVector()), 
        extrinsics_p_(_ftr_ptr->getCapturePtr()->getSensorPPtr()->getVector()), 
        extrinsics_o_(_ftr_ptr->getCapturePtr()->getSensorOPtr()->getVector()), 
        anchor_p_(_landmark_ptr->getAnchorFrame()->getPPtr()->getVector()), 
        anchor_o_(_landmark_ptr->getAnchorFrame()->getOPtr()->getVector()), 
{ 

        setType("AHP"); 
} 
 

 The N_BLOCKS parameter is specifying the number of blocks what will be used 

in the optimization. These blocks will be modified during the iteration process of the 

solver, while it is trying to obtain the optimal state.  Therefore, they must correspond to 

defining variables in this problem. When calling for the Constraint Sparse class, it 

requires the size of some parameters. Except for the first one (as it's the size of the 

residual), the others correspond to the dimensions of the five blocks explained before. 

 These values have to be sent to the Constraint Sparse in the same order as they 

were defined and must correspond with the numerical value specified. The class also 

stores for itself these values, as it will need them to compute the residual. 

! Functions 
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 The main function of this class is the one that computes the residual. 

template<typename T> 

inline bool ConstraintImage::operator ()(const T* const _p_robot, 

                                         const T* const _o_robot, 

                                         const T* const _p_anchor,  

                                         const T* const _o_anchor,  

                                         const T* const _p_lmk, 

                                         T* _residuals) const 
 

 This function will be automatically called by the solver when it so requires, and 

the input parameters are the blocks defined in the constructor, plus the residual. It is 

important to note that this function is templatized, as the solver needs to use a type of unit 

called Jet to perform the automatic calculation of the Jacobian matrices. 

 The mathematics performed in this function require to change the Landmark from 

the camera reference it was originally created to the new one (in which the Constraint is 

being made). These operations involve four chained frame transforms: camera-to-anchor-

frame, anchor-frame-to-world, world-to-current-frame, and current-frame-to-camera; plus 

a projection onto image plane, plus a comparison against the measured point. They are 

too extensive to be explained here, so they will be added in the appendix. 

 After the change of reference from the anchor camera position to the current 

camera position, we have a vector referenced in the correct camera sensor. We must, then, 

project that resulting vector with the intrinsic matrix K. 

> = ? ∗  ! ="##$%& %$' =()$#(  ( 4 ) 

 And dividing the first two components of the homogeneous vector with the last 

one we obtain the projection of the Landmark. 
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> =  >(0; 1)
>(2)  ( 5 ) 

 Then, with the value of the measurement contained within the Feature above the 

Constraint, and the square root information of the measurement (computed when creating 

the Feature), we obtain the residual. 

01234>56 = (> − 8159>01_'152>01'1;9) ∗ 2;09_0<<9_3;8<0'593<; ( 6 ) 

 This is computed for every Constraint, in multiple iterations, by the solver. The 

code in this function has to be as optimized as possible to avoid overloading the 

computational time here. 

 

 
6.7. Processor Tracker 

 Before explaining the two derived Processor classes in this project we have to 

present another class first, as those two classes will inherit the majority of the functions 

from this one. 

 The Processor Tracker was developed by the WOLF team and is a derived class 

from Processor Base. The most important function in this class is the one that introduces 

a basic methodology to track elements that will be applied in even more derived classes, 

called process.  

! Incremental Tracker 

 The algorithm behind that function implements an incremental tracker, which is 

a typical tracker for images. To do so it makes use of frames and keyframes. The 
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objective is to be able to successfully follow a Feature in one keyframe through different 

frames. At one moment in time it is decided to create a new keyframe and new Features 

are found, along with the ones that were successfully tracked, repeating the process. 

 

Figure 15 - Incremental tracker example 

 As shown in the Figure above, the Features are tracked in respect with a 

keyframe. As new Captures come, the Features are searched in them. In the Figure, the 

algorithm dictates that, below a certain number of Features tracked, a new keyframe is to 
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be made, so new Features are found in that frame. Now, with the new keyframe, the 

tracking process starts again. 

! Process function 

 To implement the incremental tracker we will make use of the following 

variables.  

CaptureBase* origin_ptr_;    ///< Pointer to the origin of the tracker. 
CaptureBase* last_ptr_;      ///< Pointer to the last tracked capture. 
CaptureBase* incoming_ptr_;  ///< Pointer to the incoming capture being processed. 
 

 It's important to remember that the Frame class must have a Capture hanging 

from them. To ease computational cost it is more efficient just storing the class that 

contains the visual data instead of the Frame.  

 The keyframe that serves as the origin for the tracking will be represented in the 

origin Capture, and the frame in which we will search for Features  in the incoming 

Capture. The Features found, however, won't be compared with the ones in origin, but 

instead to the ones in the last Capture. This last Capture corresponds to the last non-

keyframe analyzed aside from the one we are currently working on. 
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Figure 16 - Features found in the incoming Capture successfully tracked in last 

 The Figure above explains more visually how the three elements work. The role 

of the origin Capture is obvious, as the next Captures have track their Features with 

origin's. The purpose of the last Capture, however, is not so obvious: It is the last Capture 

in which some of the origin's Features are still being tracked. Between last and origin 

there may be a numerous amount of other Frames previously analyzed, and the Features 

tracked in last must also have been found in each and every one of these other Frames. 

Therefore, any Features we wish to compare found in the new incoming Capture have to 

be compared with last, which indirectly compares them with origin. 

 The whole algorithm can described in pseudo code with these simple functions. 

process(CaptureBase* incoming) 
• processKnown () 
• if voteForKeyFrame () 

o processNew () 
o makeKeyFrame () 
o reset () 

• else 
o advance ()  
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 The function will analyze the incoming image in processKnown and then will 

decide through the voteForKeyFrame function if it's time to make a new keyframe or not. 

 In case it is not necessary, the advance function will continue with the algorithm: 

the incoming Capture will now be the last Capture, with all the tracked Features it has 

found. The previous last Capture will be eliminated, because since there is a new Capture 

with more temporally advanced successful tracks, it's not needed anymore. And a new 

iteration will begin, repeating the process. 

 In case it is decided to make a new keyframe, using the function processNew 

more Features will be found and added to the last Capture, and these particular subset of 

the Features will also be tracked in the incoming. After that, as the last Capture is the last 

Frame in which the requirements to track are still valid, it will be made into a keyframe. 

The reset function will put all the Frames in their right order: the last Capture will be the 

new origin, and incoming will now take the place of last. The process will begin anew, 

expecting a new incoming Capture. 

 The processKnownFeatures and processNewFeatures, as the main functions of 

process, should behave like this in a derived class, though it may vary depending on the 

implementation. 
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processKnownFeatures () 
• track () 
• establishConstraints () 

 
processNewFeatures () 

• if detectNewFeatures () 
o track() 
o if usesLandmarks () 

" initLandmarks () 
" establishConstraints () 

 

 As you can see, this pseudo code of both functions is in concordance with the 

whole process algorithm. Each of these functions will have to be implemented in derived 

classes, so the exact details on how they operate will be done it their respective class. 

! Sidenote 

 Besides the process function, the class also implements the functions preProcess 

and postProcess. Their purpose is to perform certain tasks that either can't be done in the 

main function of the class or have to be done before or after. 

 

6.8. Processor Tracker Feature 

 The Processor Tracker Feature class was developed by the WOLF team and is 

derived from Processor Tracker. It will implement the functions inside process to 

establish constraints Feature to Feature. This class details the methodology used for five 

of the main functions in process. At the same time, it defines functions as "pure virtual", 

which must be implemented in yet another derived class. 
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! processKnown 

 The main purpose of this function is to successfully track Features against other 

Features inside the incoming Capture. To do this, it implements two pure virtual 

functions that will be applied in a derived class, called trackFeatures and 

correctFeatureDrift. 

 

• trackFeatures 

 As the name implies, it will analyze the incoming Capture for 

Features and later it will compare them with the Features in last, to track 

them. 

 

• correctFeatureDrift 

 Even if the track is successful,  we are comparing based only on 

the difference between the incoming and last Features. That difference is 

not great, or else the Feature wouldn't be tracked, but in successive 

iterations it can become a problem: the difference is still not enough to 

break the tracking process, but the Features no longer resemble the origin 

Features. That phenomenon is called drift. 

 The purpose of this function is to prevent the tracks from drifting. 

Once there is a successful tracked Feature (in the previous function 

trackFeatures) it will be compared again, not with last but instead against 

origin. If the difference between them is low, the track has not a large drift 



 
67

and it's still a viable Feature. If it's not, in hopes of correcting the drift, a 

new search will begin only for that specific Feature. However, instead of 

looking for the last Feature, the algorithm will search the origin Feature. 

That way it may find a Feature that is a better match. In case no better 

Feature is found, the Feature is discarded. 

! processNew 

 The objective of this function is to populate the Capture with new Features. Later, 

these Features must be found and tracked in the next Capture. To do that, the function 

will use these two pure virtual functions, to be implemented in derived classes. 

 

• detectNewFeatures 

  The main objective is to populate the last Capture with Features. 

To do that, it will make use of one of the keypoint detectors implemented, 

such as ORB or BRISK. Moreover, to search more efficiently the whole 

image, this function will make use of the Active Search grid (explained in 

Chapter 5.2.2). 

 

• trackFeatures 

  Once detectNewFeatures has found the new Features, we will 

make use of trackFeatures once more. As before, it will implement an 

algorithm to search the correspondent incoming Features and compare 

them with the ones found in last in the previous step. As it is not possible 
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for drift to happen in just one iteration, the correctFeatureDrift function is 

not needed. 

 

 The new Features obtained through this method will be appended in the list of the 

previously known Features, successfully populating the keyframe with already tracked 

Features. 

! establishConstraints 

 The purpose of the establishConstraints function is to create constraints between 

the last and origin. To do so, it uses the function createConstraint with two different 

Features (as the tracker compares Features against Features) to properly create it. And, 

since it's a pure virtual function, it must be implemented in a derived class. 

inline void ProcessorTrackerFeature::establishConstraints() 
{ 

    for (auto match : matches_origin_from_last_) 
        match.first->addConstraint(createConstraint(match.first,  
            match.second.feature_ptr_)); 
} 
 

 

! advance & reset 

 The advance and reset functions have quite a similar functionality in the code: 

both of them actualize the values of the Captures, although they can't be operational at 

the same time because one is meant to be used when making a new keyframe and the 

other for any other case. 
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 The voteForKeyFrame function decides whether or not to make a new keyframe. 

If the decision is negative, the advance function is triggered. It means that the Features in 

incoming have been tracked successfully, and that information must be stored so that the 

next iteration will compare its Features against those. Therefore, the incoming will now 

occupy the last Capture place, and the previous last will be erased (as the important 

information is now on the new last). 

 If the decision to create a keyframe is affirmative, it will do so using the last 

Capture. Since the reset function is triggered by that event, the last Capture will now 

become origin. Likewise, the previous incoming Capture will move on to be the last. In 

the next iteration a new incoming Capture will arrive and the process will repeat. 

 

Figure 17 - Advance and Reset functionality illustration 
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! General overview 

 As most of the functions explained here are to be implemented in yet another 

derived class, here is a general overview of the elements included and explained in this 

class, as well as those inherited from Processor Tracker. 

! preProcess 
! process 

# processKnown 
o trackFeatures 
o correctFeatureDrift 

# if voteForKeyFrame 
o processNew 

• detectNewFeatures 
• trackFeatures 

o makeKeyFrame 
o establishConstraints 

• createConstraints 
o reset 

# else 
o advance 

! postProcess 
 

 

6.9. Processor Image Feature 

 The Processor Image Feature class is a derived class from Processor Tracker 

Feature. It implements all the functions defined in the upper class to perform the tracking 

of Features against Features. 

 As you can see, while there are functions from previous (and upper) Processor 

classes, some of them are unique of this derived class, to aid with the tasks that the more 

important functions have to do. 



 
71

! Parameters & variables 

 As the number of parameters in this class far exceeds the parameters in other 

classes, it was decided to use a yaml file to write them. There would be another class, 

called "Processor  Image Yaml", whose main purpose would be to read those values and 

store them in parameters, so that other classes could use them. 

 For this purpose, four structures were declared, in order to group a list of 

parameters together. 

 

• DetectorDescriptorParamsBase 

 As two of the main structures (DetectorDescriptorParamsBrisk and 

DetectorDescriptorParamsOrb) implement their own separate parameters, this 

structure is thought to contain any information defined by both of them. 

 In this case, the only parameter at this moment is the type, which will 

define if the class will use as a detector/descriptor BRISK or ORB. 

 

• DetectorDescriptorParamsBrisk 

 This structure will contain all the necessary parameters used by the 

BRISK detector/descriptor. 

unsigned int threshold=30; ///< on the keypoint strength to declare it key-point 

unsigned int octaves=0; ///< Multi-scale evaluation. 0: no multi-scale 

float pattern_scale=1.0f; ///< Scale of the base pattern wrt the nominal one 
 

 All of them can be modified in the yaml file containing the prameters, 

without having to change anything from the code. 
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• DetectorDescriptorParamsOrb 

 For the ORB detector/descriptor there is also a structure to store the 

parameters. 

unsigned int nfeatures=500; ///< Nbr of features to extract 

float scaleFactor=1.2f; ///< Scale factor between two consecutive scales of the image 

pyramid 

unsigned int nlevels=1;///< Number of levels in the pyramid. Default: 8 

unsigned int edgeThreshold=4; ///< ? //Default: 31 

unsigned int firstLevel=0; 

unsigned int WTA_K=2; 

unsigned int scoreType=cv::ORB::HARRIS_SCORE; ///< Type of score to rank the detected 

points 

unsigned int patchSize=31; 
 

 This parameters can be modified as well, just changing the value in the 

correspondent yaml file. 

 

• ProcessorParamsImage 

 The three previous structures were made to contain parameters of the 

detector/decriptor, while this one has to store all the necessary parameters used in 

the execution of the class. 

 It has four substructures to keep the data organized: 
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# Image 
o width 

///< Width of the image 
o height 

///< Height of the image 
# Matcher 

o min_normalized_score 
///< [0 .. 1] Minimum score to decide if a Feature found matches another 

o similarity_norm 
///< Norm used to measure the distance between descriptors 

o roi_width 
///< Width of the ROI used in tracking 

o roi_height 
///< Height of the ROI used in tracking 

# Active Search 
o grid_width 

///< Cells per horizontal dimension of the image 
o grid_height 

///< Cells per vertical dimension of the image 
o separation 

///< Distance between the border of the cell and the border of the associated ROI 
# Algorithm 

o max_new_features 
///< Max. number of features to be detected in one frame 

o min_features_for_keyframe 
///< Min. number of features required to vote for a keyframe   

 

! Helper functions 

• detect 

  Since the image has to be analyzed for Features a large number of times in 

each iteration, the detect function is very handy. Independently of the selected 

detector/descriptor the function analyzes only a small region of interest of the 

image provided, storing the keypoints of all the Features and their descriptors. 



 
74

  To analyze the image we make use of the keypoint detectors and 

descriptors provided by the OpenCV library, as well as some of the functions 

provided by it. At the time to write this project, the detectors/descriptors available 

are ORB and BRISK. Moreover, we use the OpenCV functions detect and 

compute to detect the keypoints in the image and to describe them, respectively. 

  The selection of the region of interest (ROI) must be decided outside this 

function, as its only purpose is to analyze whatever it is told to analyze. Another 

of the "helper functions", adaptRoi, will be the one to assure that the ROI has the 

necessary requirements to work in the best conditions. 

 

• match 

  The main purpose of this function is to compare descriptors. There is 

usually a "target" and many "candidates", and the OpenCV function match will 

compare their binary descriptors using the Hamming distance method and return 

the candidate whose descriptor is more similar to the target. Once we obtain the 

result it is normalized. 

;<0'563614 2=<01 = >392 <8 4388101;=1 >19?11; 950@19 5;4 =5;434591
>392 <8 9ℎ1 412=0379<0  ( 7 ) 

 

• adaptRoi 

  This function is actually formed by another two: trimRoi and inflateRoi. 

One of the other helper functions, detect, is given a region of interest (ROI) of the 
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image to search for Features. adaptRoi makes sure that  this ROI has the right 

requirements to be used. 

  In Chapter 5.2.1 it was explained how, to detect and describe a keypoint, 

some pixels around said keypoint were needed. This means that the 

detector/descriptor needs some space to operate with a point, and in this situation 

any ROI analyzed would have a small zone in which no keypoints are detected, as 

the ROI doesn't have enough space to detect or describe it. Therefore, inflateRoi 

expands the boundaries of the ROI just the pixels the detector and descriptor 

needs, to assure the ROI is completely search and kept as small as possible. After 

that, the function trimRoi asserts that the given ROI is within the image: If the 

ROI has some parts of it outside the image, it trims them so there are no errors 

when searching in that space. 

  At last, the modified ROI is assigned to the image, so that the detect 

function can work more efficiently. 

 

! Main functions 

• preProcess 

 The main purpose of the function is to have a tool to implement some 

functionality external to process, as well as to initialize variables before it starts. 

This is the case of the Active Search, for instance, as it has to be refreshed at 

every iteration so that the grid has a random offset each time. 
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• postProcess 

 The function's main purpose is to have a tool to implement some 

functionality that can't be done in the process. In this class, for example, it is 

implemented the visualization functions used for debugging. 

 

• advance & reset 

 These two functions can be overwritten from the upper class to implement 

a new functionality if it's necessary. In this class there were some minor variables 

that had to be "advanced" along with the frames, but the functionality of the upper 

class (for both functions) is still implemented. 

 

• trackFeatures 

 The trackFeatures function searches for Features in the incoming Capture, 

and tracks them. As this function has to be used in both processKnown and 

processNew, the input parameters as well as the code must be as general as 

possible. Therefore, two of the input parameters are lists of Features: an input list 

with all the Features to be tracked in the incoming Capture, and an output void list 

which will be filled with the tracked Features. 

 The main algorithm of the function is as follows: A parametrizable region 

of interest (ROI) will be created around one of the Features in the input list. Using 

this ROI on the detect function, along with the image from the incoming Capture, 

will return a list of keypoints found and their respective descriptors. Immediately 
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after we call the match function to compare the newfound keypoints descriptors 

against the descriptor of the Feature we want to track, which will return a 

normalized score. 

 If the returned score is lower than the parametrizable value of 

"min_normalized_score", the Feature has not been tracked. On the other hand, if 

the value is higher it means that is was successfully tracked. The candidate 

keypoint is then converted to a Feature object and added to the output list of 

Features. 

 This process is done for all the Features in the input list of Features. When 

there are no more elements, the function returns the number of successfully 

tracked Features. 

 

• correctFeatureDrift 

 As previously stated in Processor Tracker Feature, this functions tries to 

correct the phenomenon called drift. The first step to correct the drift is to detect 

it, so the descriptor of an incoming Feature and the origin one are compared in the 

match function, which returns a normalized score. 

 If the returned score is higher than a parametrizable score we can assume 

there is no drift. If the score is lower, however, the drift must be corrected. 

 To do that correction we will search for the Feature once more in the 

incoming Capture. The methodology is almost the same as the one in 

trackFeatures. This time, however, we will use the origin Feature descriptor to 
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compare instead of last's. If the normalized score returned by the match function 

is higher than the "minimum score", the new keypoint is converted into a Feature, 

taking the place of the old incoming Feature (which had drift). If the normalizes 

score is lower, the correction doesn't take place. 

 

• voteForKeyFrame 

 This function is the one that decides if we should create a new keyframe of 

not. Many different algorithms can be applied here to decide, varying from simple 

to really complex.  

 In this project it was decided to count the number of tracked Features: if 

the value is lower than a certain parameter, a new keyframe will be created in the 

last Frame (as it was the last to meet the requirements specified here). 

 

• detectNewFeatures 

 The main goal of this function is to populate the image with Features. As a 

parameter of the class, "max_new_features" can limit the number of iterations 

made, and thus the number of new Features found. 

 The algorithm uses the Active Search grid, as it will provide a random, 

void of any Features, region of interest (ROI) to search. With that ROI we will 

use the detect function to find new keypoints and their associated descriptors.  

 OpenCV has an internal score when using keypoint descriptors (such as 

ORB or BRISK), and the function retainBest will analyze the list of keypoints and 
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select the one with the highest score. This selected keypoint is, among those in the 

list, the most identifiable of all, and it's more likely to be tracked successfully in 

the next frames so it is converted into a Feature and added to the list of Features 

in the last Capture. 

 After that, the Active Search is informed that we found a Feature in that 

cell. If that was not the case, because the detect function is unable to find any 

keypoint in the ROI, the Active Search is also properly informed. 

 

• createConstraint 

inline ConstraintBase* ProcessorImage::createConstraint(FeatureBase* _feature_ptr, 

FeatureBase* _feature_other_ptr) 

{ 

    ConstraintEpipolar* const_epipolar_ptr = new ConstraintEpipolar(_feature_ptr,  

         _feature_other_ptr); 

    return const_epipolar_ptr; 

} 
 

 This function is rather simple, as the only operation to be done is to create 

a Constraint element. In the case of the Processor Image Feature class, the one 

used will be the Constraint Epipolar. 

  At the moment of writing this project, this Constraint has not been 

developed yet. The whole algorithm concerning the Feature against Feature 

method works, but as it doesn't have a Constraint class that can compute a 

residual, the optimizer can't solve anything. 
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6.10. Processor Tracker Landmark 

 The Processor Tracker Landmark was developed by the WOLF team, and is a 

derived class from Processor Tracker. It implements the necessary steps so that the 

function process can establish constraints Feature against Landmark. This class details 

the methodology used for five of the main functions in process. At the same time, it 

defines functions as "pure virtual", which must be implemented in yet another derived 

class. 

! processKnown 

 The main purpose of this function is to project the Landmarks in the environment 

and successfully find them inside the incoming Capture. To do this, it implements a pure 

virtual function that will be applied in a derived class, called findLandmarks. 

 

• findLandmarks 

 In general aspects, findLandmarks is quite similar to the 

trackFeatures function (used in Processor Image Feature), as both try to 

find a correlation between a Feature and something else. In this case we 

are now searching for the relation between a Feature and a Landmark. The 

function will have to implement a projection of the Landmark, as a 

landmark is a 3D element in the space and can't be compared trivially with 

a 2D Feature. 



 
81

 The other difference with trackFeatures is that all this methodology is 

done only on the incoming Capture. The Landmarks are always there, so just 

projecting and searching for them in that Capture is enough.  

! processNew 

 The objective of this function is to populate with Features the Capture that is 

going to become the new keyframe. Later, these Features will be used to create 

Landmarks. To do that, the function will use three pure virtual functions, to be 

implemented in derived classes. 

 

• detectNewFeatures 

  The main objective is to populate the Capture with Features. To 

accomplish that, the function will make use of one of the keypoint 

detectors implemented, such as ORB or BRISK. Moreover, to search more 

efficiently the whole image, this function will make use of the Active 

Search grid (explained in Chapter 5.2.2). 

 

• createNewLandmarks 

  Once we have these new Features, this function will create the 

Landmarks. To do that, it will make use of the pure virtual function 

createLandmark, that must be implemented in a derived class. 
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• findLandmarks 

  Once createNewLandmarks has created this new set of Landmarks, 

we will make use this function once more. This way it is assured that the 

new created Landmarks are found, and a Constraint can be established. 

 Once findLandmarks ends, we will have a list of Features that correspond to 

projections of Landmarks, and it will be appended to the current list. 

 

! establishConstraints 

 The purpose of the establishConstraints function is to create constraints between 

the last and origin frames. To do that, however, uses the function createConstraint with a 

Feature and a Landmark to properly create it. And, since it's a pure virtual function, it 

must be implemented in a derived class. 

inline void ProcessorTrackerLandmark::establishConstraints() 

{ 

    for (auto last_feature : *(last_ptr_->getFeatureListPtr())) 

        last_feature->addConstraint(createConstraint(last_feature,  

            matches_landmark_from_last_[last_feature]->landmark_ptr_)); 

} 
 

 

! advance & reset 

 The Processor Tracker Landmark doesn't use the last Capture except for when 

creating a Constraint. Taking that into account, the only operation these two functions do 

is move the list of Features in incoming to last. 
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! General overview 

As most of the functions explained here are to be implemented in yet another derived 

class, here is a general overview of the elements included in this class, as well as those 

inherited from the Processor Tracker. 

! preProcess 
! process 

# processKnow 
o findLandmarks 

# if voteForKeyFrame 
o processNew 

• detectNewFeatures 
• createNewLandmarks 

o createLandmark 
• findLandmarks 

o makeKeyFrame 
o establishConstraints 

• createConstraints 
o reset 

# else 
o advance 

! postProcess 
 

 

6.11. Processor Image Landmark 

 The Processor Image Landmark is a derived class from Processor Tracker 

Landmark. It implements all the functions defined in the upper class to perform the 

tracking of Features against Landmarks. 

 As you can see, while there are functions from previous (and upper) Processor 

classes, some of them are unique of this derived class, to aid with the tasks that the more 

important functions have to do. 



 
84

! Parameters & variables 

  As the parameters and variables of this class are exactly the same as the 

ones used in the Processor Image Feature, to read about them go to Chapter 6.9. 

! Helper functions 

• detect, match & adaptRoi 

  These three functions are exactly the same as the ones in the Processor 

Image Feature. To know about their functionality, go to Chapter 6.9. 

 

• rotationMatrix 

  This function generates a rotation matrix from a given quaternion. The 

rotation matrix associated with a quaternion is as follows. 

BC;D =  E
;'F + ;*F − ;+F − ;,F 2H;*;+ − ;';,I 2H;*;, + ;';+I

2H;*;+ + ;';,I ;'F − ;*F + ;+F − ;,F 2H;+;, − ;';*I
2H;*;, − ;';+I 2H;+;, + ;';*I ;'F − ;*F − ;+F + ;,F

J ( 8 ) 

 

• changeOfReferenceFrame 

  It contains the operations needed to find the translation vector and rotation 

matrix which will perform a change in reference from the previous camera 

position to the current one. The formulas behind this function can be found in the 

appendix. 

 

 



 
85

• getLandmarkInReference 

  Implements the change in reference from the previous camera position to 

the current one with the translation and rotation obtained through 

changeOfReferenceFrame. Moreover, it transforms the homogeneous vector (now 

on the correct camera reference frame) into the Euclidean coordinates. The 

formulas behind this function can be found in the appendix. 

 

! Main functions 

• preProcess & postProcess 

 These two functions are already explained in the class Processor Image 

Feature, as they are exactly the same as the ones used there. For more information 

about their functionality, go to Chapter 6.9. 

 

• advance & reset 

 These two functions can be overwritten from the upper class to implement 

a new functionality if it's necessary. In this class there were some minor variables 

that had to be "advanced" along with the frames, but the functionality of the upper 

class (for both of the functions) is still implemented. 

 

• findLandmarks 

 The main purpose of this function is to find the projection of all the 

Landmarks visible by the camera. For that we will project the Landmarks, and 
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around the projected pixel a search for a Feature with a similar descriptor will 

begin. 

 The function has only two main input parameter: the list of all the 

Landmarks and a void Feature list. The following algorithm has to be 

implemented for each one of the Landmarks in the list. 

 First of all, the analyzed Landmark is described as an homogeneous 

unitary vector with an anchor, as explained in Chapter 5.3. That means that the 

Landmark is described in another camera position and orientation than the one 

currently using. If it's not referenced to the current camera position, the projection 

of the Landmark will return an erroneous point. Therefore, before projecting the 

Landmark, we must use the two helper functions changeOfReferenceFrame and 

getLandmarkInReference. The first function makes all the necessary operations to 

find the translation vector and rotation matrix needed to change from the previous 

camera to the current one, and the second function implements that operation and 

transforms the homogeneous  vector into the Euclidean coordinates. The 

mathematics behind these two functions are explained in the appendix. 

 After that, the 3D point obtained is ready to be projected into the plane of 

the camera. We make use of the pinholeTools class to do the projection, with the 

functions projectPointToNormalizedPlane and pixelizePoint, which make the 

projection to the plane and transform that 2D point into a pixel of the image, 

respectively. Then the isInImage function (also from the pinholeTools class) 

analyzes the pixel to check if the projection of the Landmark at this moment is 
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still within the image. The output of this function checks whether this Landmark 

can or can't be seen from this camera position. In case it can't, the function ends 

and the Landmark is not found. 

 A parametrizable region of interest (ROI) is created around the resultant 

pixel. Using the ROI on the detect function will return a list of keypoints found 

and their descriptors. Then, we call the match function to compare the newfound 

keypoints descriptors against the descriptor of the analyzed Landmark, which will 

return a normalized score. 

 If the returned score is lower than the parametrizable variable 

"min_normalized_score", that would mean that the keypoint found doesn't match 

with the projected Landmark.  On the other hand, if the value is higher it means 

that the Landmark was successfully found. The candidate keypoint is then 

converted to a Feature object and added to the output list of Features. 

 

• voteForKeyFrame & detectNewFeatures 

 These two functions are exactly the same as the ones in Processor Image 

Freature. To know more about these two functions, go to Chapter 6.9. 

 

• createLandmark 

 The Landmark class that is going to be used in this problem is called 

"Landmark AHP", as the "Anchored Homogeneous Point" is the most adequate 

point description for this case. 
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 Since we have to create a Landmark from a Feature, the first step must be 

to make this Feature homogeneous. We add another dimension to it with an 

unitary value to do so. After that, we must obtain the intrinsic matrix (K) stored in 

the Sensor data and apply this operation to obtain a direction vector with 

reference in the camera: 

' = = ?KL ∗ > ( 9 ) 

 If this direction vector is normalized we will obtain the same direction 

vector but in unitary form. 

' = = ' =
‖ ' = ‖ ( 10 ) 

 As it is explained in Chapter 5.3, the Landmark AHP class needs an 

homogeneous unitary vector, and the complete position and orientation of its 

anchor. We have the necessary unitary vector, so it must be converted into an 

homogeneous one adding another dimension. As we are using the "inverse 

distance" technique, the value of this new dimension will be that of the inverse of 

distance to that point. Since we don't know where will that point be, the 

"distance" parameter is just a prior estimation. Nonetheless, the value has to be 

the inverse of that distance estimation. 

ℎ<'<@1;1<>2 >;39505 !1=9<0 = N ' = L, ' = F, ' = P, 1
43295;=1Q ( 11 ) 

 For the position and orientation of the anchor it's only needed to get the 

last Frame, as the Frame in which the Landmark is created is the anchor of said 

Landmark. 
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 Lastly, the Landmark AHP class also needs the descriptor of the Feature 

the Landmark is based on, as it's needed if we want to compare the descriptors 

when using the findLandmarks function. 

 

• createConstraint 

  The createConstraint function is rather simple, as it's used only to create 

the derived class Constraint AHP. This class needs a Feature and the 

correspondent Landmark to establish a constraint between the two. It is also 

needed the last Frame as it's the anchor of that Landmark. 
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Chapter 7  

Results 

 After explaining WOLF and the derived classes created for this project, we should 

take a look at the performance when tested. The most important results are summarized 

here, in an orderly fashion, up to the moment of writing this project. 

 

! Keypoint detector 

 As we have seen though the project, two detector/descriptor systems are used to 

find features: BRISK and ORB. The first tests were done by BRISK and it was the 

selected detector until the tracker was implemented, being used with still images, video 

footage and real cameras. The main issue encountered with that detector is that, for 

reasons yet unknown, BRISK couldn't maintain the tracks of the features. It certainly 

detected keypoints, but when a new capture came in it could find most of the previous 

keypoints. All those found keypoints were twitching in a really close space, as if they 

were dancing around the true keypoint position (for example, a well defined corner). 

 It was then decided to implement the ORB detector, and the difference was 

remarkable. The keypoints didn't twitch around like in BRISK and they were almost 

fixed to the same salient point in the image, which improved the performance of the 

tracker. From that moment on, the default detector and descriptor used in the project 

became ORB. Of course, the BRISK implementation is still available in the code. 
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! Tracker - Feature against Feature 

 The Processor Image Feature has all the necessary classes from the WOLF tree 

already defined to aide it to track and match the features found. However, there is one 

class that, due to time restraints could not be implemented, prevents the whole system to 

obtain a solution to the problem: it lacks a Constraint class to compute the residual. 

Without a residual the solver can't iterate and find an optimal state, therefore the problem 

can't be solved. Nonetheless, all the functionality in the system works well and 

consistently. The tracker, despite using ORB as it main detector/descriptor, and being far 

better than the BRISK alternative, is not as robust as we would like it to be. At the 

moment of writing this project a solution for this issue has not yet been found, mostly due 

to time restrictions, although one of the guesses indicates that it's possible that it returns a 

high number of erroneously matched tracks, which would hinder the performance of the 

other parts of the system. 

 

! Tracker - Feature against Landmark 

 On the other hand, the class Processor Image Landmark has the complete WOLF 

tree to apply the methodology explained in the previous chapter. In Figure 18 we can 

visualize a test done with a real camera. The Landmark projections are represented in big 

red dots, while the keypoint candidates to be compared to that projection are represented 

as little cyan dots. The square around the Landmark projection is the region of interest 

(ROI) in which to search those candidates. 
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Figure 18 - Found landmarks in the image, along with the candidates to match and the 

ROIs around the projections 

! Calculation of the residual 

 The final computation to be done in a Constraint class is the residual one. In this 

problem, the residual is calculated subtracting the measurement from the estimation of 

the Landmark projection. When printing on screen the elements in that operation, we find 

outliers and inliers, as seen in the Figure below. 
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Figure 19 - Residual output 

 Though some of the residuals are very close to zero, which is a very accurate 

result, in others the value is too high to be correct. In the Figure you can see a difference 

of 6 and 10 pixels between the estimation and the measurement, although with every 

passing iteration, the difference in the residuals gradually becomes higher.. This result 

strengthens the theory of the "erroneously matched" tracks, though to time restrictions it 

has not revealed if that is the real reason of this difference. 

 We have to mention that this still work is still ongoing, and we are in the process 

of optimizing the code and debug. 
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! Solver convergence 

 To solve the problem, the optimizer must modify the positions and orientations of 

the elements included in the problem in such a way as to minimize the sum of all 

residuals . At each one of these iterations, the optimizer calls the Constraints, and asks for 

the residual. 

 

Figure 20 - Ceres Solver Summary print 

 When the solver is called, it tries to compute a solution through iteration, as seen 

in Figure 20. When looking at the difference between the "successful steps" and the 
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"unsuccessful steps", it is patent that something is not going as it should. This in 

enhanced with the "cost" values, as the initial and final values are almost the same. 

 The solver iterates and converges into a solution, but the amount of unsuccessful 

movements towards the optimal state keeps the solution stale. And the Figure only shows 

one of the first operations with the solver: As time goes on in the problem, the optimizer 

is completely unsuccessful and doesn't converge. 

 One explanation for this could be the high value of the residuals. To even the 

values of all the residuals is the method in which the solver will arrive to the optimal 

solution. With such high values of the residuals, it is possible that, no matter what 

direction the solver makes a step, some of the residuals are always going to have high 

outputs. In this case, the solver would almost always take an "unsuccessful step", thus not 

converging as gradually more residuals have to be dealt with. 

 

! ROS implementation 

 Last, but not least, we must talk about the Robot Operating System (ROS) 

implementation with WOLF. The structure in which ROS operates is really compatible 

with WOLF. In that regard, a ROS node was created to run an early version of the 

"Feature against Feature" tracker implementation. 
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Figure 21 - Test of the WOLF node in ROS 

 The camera sensor already had a ROS node, so the connection between the two 

nodes was fairly simple. Features are obtained and, although this implementation runs 

with BRISK, some tracks are successfully found. However, as the Processor Image 

Feature evolved, this did not. As of now, this ROS node is deprecated. 
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Chapter 8  

Project Management 

8.1. Planning 

 The project can be split in three identifiable parts: the Research, in which 

information about the project is gathered, the Implementation, part in which the code is 

developed, and the Documentation, reserved for the making of this document. The 

general overview of the project is as follows. 

 

Figure 22 - General overview of the project 

 Seeing the duration of each one of the parts it is clear that majority of the effort in 

this project went to the Implementation part. If we look with a little more detail in each of 

these parts, we find this: 

 

Figure 23 - Detailed overview of the project 
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 Applying the detailed overview over a Gantt diagram, we can visualize the 

complete planning with ease. 

 

Figure 24 - Gantt diagram of the project 

 The majority of the project was used in the Implementation part, specially to 

create both of the Processor classes. Since they are the ones giving the orders to the other 

classes it is to be expected. The Constraint AHP also required some time to developed as 

it computes the residual, which is crucial to the development to the project. 

 

8.2. Costs 

 The costs can be divided in two groups: Human Resources and Hardware 

Resources. 

• Human Resources 

 Assuming 8 hours of work per day, with a varying cost per hour depending on the 

task, as the amount of effort is different too. Using the number of days from Figure 22, 

we can calculate the human resources cost. 
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 Days Hours Price Total Cost 

Research 31 248 14 € 3472 € 

Implementation 110 880 18 € 15840 € 

Documentation 16 128 12 € 1536 € 

Total 157 1256  20848 € 

 

The total cost of the human resources amounts to 20848 €. 

 

• Hardware Resources 

 Only a computer has been used in this project, a desktop computer from IRI. The 

UAV in which the testing has to be done is not taken into account as it has not been used 

in the span of the current project. 

• HP desktop computer with an Intel Core i5-650 Processor at 3.20 GHz with 8Gb 

RAM memory (≈ 500 €) 

Assuming a 3 year life for the computer, the hardware cost is computed like this: 

R504?501 =<29 =  500 €
3 51502 ∗ 12 '<;9ℎ2 5150V ∗ 22 4552

'<;9ℎV ∗ 8 ℎ<>02 455V

≅ 0,08 €/ℎ<>0 

Therefore, if we multiply by the number of hours, we will obtain the total hardware cost. 

Z<956 R504?501 [<29 = 0,08 €
ℎ<>0 ∗ 1256 ℎ<>02 = 100,48 € 
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The total cost of the project is expressed as the sum of both costs: 

Z<956 [<29 = R504?501 012. + R>'5; 012. = 20848 € + 100,48 €

= 20948,48 € 
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Chapter 9  

Conclusions 

 The goal of the current project is to develop a system that is able to compute the 

position and orientation of an UAV via camera sensors with the WOLF library. 

 We have managed to implement a system that is able to extract data from an input 

camera sensor and analyze it with a keypoint detector. When it tries to compute its own 

position and orientation using visual odometry and SLAM techniques, as of the moment 

of writing this project, it's unsuccessful. We are in the process of debugging and 

optimizing our code for this objective to be achieved. 

 The WOLF library was used to perform this task, contributing in its development 

as well by creating the classes that would implement the strategy and algorithms needed 

for the project. Moreover, two different approaches have been made to solve the problem: 

tracking the features found in an image against other features, or against environmental 

landmarks. 

 The main objective of the project has been almost completed, and further testing 

will assure the success of this goal.   
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Chapter 10  

Future Work 

 There are still a lot of improvements to be made to the project. As it is now, the 

optimizer can't compute the optimal state as it doesn't converge, so a solution to this 

problem is one of the first things that have to be done. 

 It has been mentioned that the current project can be used with an inertial model 

to measure rotational velocities and translational accelerations, and it could be an 

interesting approach to test these features with an unmanned aerial vehicle (UAV) in 

simulated and real environments. 

 Another nice improvement could be to implement an outlier rejection. If a point is 

far too distant from the others, it increases the error of the whole process. Those points 

have to be dealt with and an outlier rejection method like RANSAC (Random Sample 

Consensus) would be a good option. The alternative would be applying the loss function, 

a functionality already incorporated in the code, although RANSAC would perform 

better. 

 ROS is a really nice tool to use alongside with WOLF. A test of a WOLF node in 

ROS was developed, but it was done in early stages of the project, so there is a lot of 

room for further testing. 
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Appendix 

1. changeOfReferenceFrame 

 The function is trying to implement a change of reference frame from a 

"previous" camera frame to the "current" one. The mathematics to do that can be 

summarized as: 

`
!

1 %V a
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 ( 12 ) 

 

 In which the index "cc" stands for "current camera", and "pc" stands for 

"previous camera". The rotation and translation returned from this function are these two 

values. However, to know to properly obtain them though calculations, we must redefine 

the transformation in more detail, expressing it like this: 

 

`
!

1 %V a
 

==
=  bB Z

0 1c
=#

 

 

==
bB Z

0 1c
9

 

 

=#
bB Z

0 1c
d#

 

 

9
bB Z

0 1c
d=

 

 

d#
`

'
1 %V a

 

d=
 ( 13 ) 

 

 To transform the "previous camera" frame into the "current camera" frame, we 

will have to pass through "previous robot", "world", "current robot" and "current 

camera" frames. However, we don't have the transformations from "world" to "current 

robot" and "current camera" as they are here, only the inverse. We will apply the 

following transformation principle: 

bB Z
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 With that in mind, the previous transformations now can be expressed as: 

`
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 Operating with the matrices will lead to find the rotation and translation that go 

from "previous camera" to "current camera" frame. 

 

2. getLandmarkInReference 

 With the function changeOfReferenceFrame, we now have the values of the 

translation vector and rotation matrix. 
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 The purpose of this function is to apply the transformation to the unitary vector, 

therefore: 

! == = H Bd=  == ∗ ' d= I + H Zd=  == ∗ 1 %V I ( 17 ) 

 And, after that, we obtain an Euclidean point doing this: 

7 Pf = ! (0; 2)
!(3)g  ( 18 ) 

 

3. pinholeTools operations 

 The equations behind the functions of the pinholeTools are listed here. (Solà, 

2007) 
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• projectPointToNormalizedPlane 
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• distortPoint 
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• pixellizePoint 
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• unpixellizePoint 
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• undistortPoint 

0 = =(0k) = (1 + =F0kF + =l0kl + ⋯ ) ∗ 0k  ( 24 ) 
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• backprojectPointFromNormalizedPlane 
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4. WOLF code 

 The code used for every class, in both the .h and .cpp forms, would take a 

considerable amount of space. On this event, it was decided not to include it directly, but 

to put a reference to the github branch where it is stored. (IRI) 


