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Abstract In this paper, the closed-form compliance equations for Circularly Curved-
Beam Flexures are derived. Following a general modeling procedure previously de-
scribed in the literature, each element of the spatial compliance matrix is analytically
computed as a function of both hinge dimensions and employed material. The theo-
retical model is then validated by comparing analytical data with the results obtained
through Finite Element Analysis. Finally, a case study is presented concerning the
potential application of these types of flexures in the optimal design of compliant
robotic fingers.
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1 Introduction

A flexure hinge is a flexible connector that can provide a limited rotational motion
between two parts by means of material deformation. According to [2], these con-
nectors can be used to substitute traditional kinematic pairs (like bearing couplings)
in rigid-body mechanisms, thus obtaining the so-called Lumped Compliant Mecha-
nisms (LCMs), in which compliance is concentrated in relatively small regions con-
nected through rigid links. When compared to their rigid-body counterpart, LCMs
are characterized by reduced weight, absence of backlash and friction, part-count
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reduction, but restricted range of motion.
From a design perspective, the introduction of flexure hinges in serial articulated
chains, like anthropomorphic hands and prosthesis, seems promising as it can allow
the generation of very slender and light mechanisms that better reproduce biological
structures. For instance, Fig. 1 and Fig. 2 depict two compliant robotic fingers, pre-
viously proposed by Lotti and Vassura [8], that employ either Straight-Beam Flex-
ures (SBF) or Circularly Curved-Beam Flexures (CCBF) as possible substitutes for
traditional revolute joints (the corresponding hinge rotation being defined as princi-
pal rotation [3]). In this case, regardless of the flexure topology, the use of flexible
joints allows one-piece manufacturing and enhanced performance in terms of ro-
bustness and safety when interacting with unknown environments or humans (e.g.
[4]). Despite the aforementioned advantages, LCMs also introduce new engineering
challenges mainly due to possible fatigue failures and undesired spatial motions,
which may occur under the action of out-of-plane forces also in LMCs initially con-
ceived as planar mechanisms.
In this scenario, relatively simple models, such as the well-known pseudo-rigid-
body model described in [5], can turn very useful for model-based control of robotic
systems [1], and for designing LCMs with prescribed load-displacement profiles at
one point on their structure [9]. In parallel, the knowledge of the hinge compliance
behavior in the 3D space, even in the small displacement range where a 6x6 spatial
compliance matrix can be defined, may become extremely valuable for both first
attempt sizing the hinge dimensions and for comparison purposes. For instance, a
method for comparing the selective compliance of elastic joints with generic mor-
phology has been proposed in [3]. Empirical equations based on Finite Element
Analysis (FEA) for various hinge profiles have been reported in e.g. [12], whereas
the stiffness matrices concerning several hinge geometries (e.g. circular and ellipti-
cal) can be found in [7]. Furthermore, several studies concerned the stiffness anal-
ysis of curved beams by means of the Castigliano second theorem [10] or the so-
called direct methods [6].
Following a similar approach, the contributions of this paper are: a) to report the
closed-form compliance equations for CCBF (i.e. a particular case of generic curved
beams); b) to compare CCBF and SBF in terms of selective compliance and maxi-

Fig. 1 Mono-piece robotic finger employing
Straight-Beam Flexures [8]

Fig. 2 Mono-piece robotic finger employing Cir-
cularly Curved-Beam Flexures [8]
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mum achievable principal rotation. In particular, the CCBF and SBF employed for
the fabrication of the robotic fingers depicted in Fig. 1 and Fig. 2 are considered as
a case study, whereas the theoretical CCBF model is derived following the general
procedure outlined in [6] and subsequently validated via FEA.

2 Closed-Form Compliance Equations

As previously said, the direct analytical method proposed in [6] is used for defining
the CCBF flexural behavior. With reference to Fig. 3, let us consider a cantilever
curved beam with a uniform cross section and generically loaded on the free end.
Node 1 and node 2 are two points located on the beam fixed and free end respec-
tively. The external load, P, and the corresponding deformation, Q, might be ex-
pressed in a predefined global coordinate system via the following column vectors:

P =
[

fx fy fz mx my mz
]T; Q =

[
u v w α φ ψ

]T (1)

where u, v, w and α , φ , ψ are, respectively, the three displacements of node 2 and
the three rotations of the corresponding beam cross section along the x, y and z di-
rections. With reference to Fig. 4, a local coordinate system centered on the centroid
of a generic beam cross section can be defined. In particular, these local coordinates
are denoted as l, m and n, namely the tangent vector and the principal vectors of the
cross section [6]. The relation between local and global coordinates can be written
as follows:  l

m
n

=

 lx(s) ly(s) lz(s)
mx(s) my(s) mz(s)
nx(s) ny(s) nz(s)

 .
 i

j
k

= R(s) ·

 i
j
k

 (2)

where s refers to the coordinate variable along the curve and R(s) is the rotation ma-
trix that relates global and local coordinate frames. The curve defining the centroid
of the beam cross sections, curve C, in the global coordinates can be expressed by:

P

s

Node 1

Node 2
Curve C

ds

x
y

z

Fig. 3 Cantilever curved beam loaded at the
free end

n

m

C.A . l

Fig. 4 Cross section of the beam and the local
coordinates
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r(s) = x(s)i+ y(s)j+ z(s)k (3)

The load P acting on the free end is balanced by a load P′ acting on the element
ds of the curve C. This load P′ produces a deformation, E, on the same element.
The matrices P′ and E, together with the corresponding analytical relation can be
expresses as:

P′ =
[

fl fm fn ml mm mn
]T ; E =

[
εll γlm γln κll κlm κln

]T ; P′ = K ·E (4)

The matrix K in Eq. 4 is the stiffness matrix of the element ds that can be written
as:

K =


EA 0 0 0 0 0
0 βmGA 0 0 0 0
0 0 βnGA 0 0 0
0 0 0 GJ 0 0
0 0 0 0 EIm 0
0 0 0 0 0 EIn

 (5)

where A, βm, βn, Im, In, J, E and G are, respectively, cross section area, shear co-
efficients, principal moments of inertia and polar moment of inertia of the beam’s
cross section, Young’s modulus and shear modulus of the employed material. The
deformation, dQ′, of the element ds, due to the load P′, is defined by:

dQ′ =
[
du′ dv′ dw′ dα ′ dφ ′ dψ ′

]T
= E ·ds (6)

where u′, v′, w′ and α ′, φ ′, ψ ′ are respectively displacements and rotations of the
element ds in the l, m and n directions. The load P′, acting on ds and due to the
presence of a load P on the free end, can be computed via the adjoint transformation
matrix T ∈ R6×6 between the global and local coordinates. The following relation
holds:

P′ = T ·P (7)

The adjoint matrix T is a function of s and can be computed from Eq. (2) and Eq.
(3), as:

T =

[
RT 0

(r̃s ·R)T RT

]
(8)

where rs = r− r2 is the position vector connecting node 2 to the centroid of the
section, 0 ∈ R3×3 is a null matrix, and r̃s denotes the cross product matrix of rs, i.e.
the matrix such that r̃u = r×u for any vector u. In addition, the deformation of the
element ds, dQ′, causes a deformation at the free end, dQ, that can be calculated
using the following equation:

dQ = TT ·dQ′ (9)

By merging Eqs. (4), (6), (7) and (9), one obtains:

dQ = TT ·K−1 ·T ·P ·ds (10)
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R
w

t

Free end Fixed end

Fig. 5 Cross section properties and geome-
tric parameters of the hinge

α

Fig. 6 FEA of the circularly curved-beam flexure
hinge

By integrating Eq. (10), one can find the relation between the load, P, and the de-
formation, Q, of the free node, as follows:

Q = C ·P (11)

where:
C =

∫
C

TT ·K−1 ·T ·ds (12)

Matrix C is the compliance matrix for a general cantilever curved beam and it gives
the relation between the loads at the free end and the corresponding deformations.
This method is applied to a CCBF as the one depicted in Fig. 5, in order to esti-
mate its compliant behavior under a generalized loading condition. Henceforth, the
CCBF compliance matrix is derived in its analytical form and explicitly presented
hereafter:

C =



Cx, fx 0 0 0 Cx,my Cx,mz

0 Cy, fy Cy, fz Cy,mx 0 0
0 Cz, fy Cz, fz Cz,mx 0 0
0 Cθx, fy Cθx, fz Cθx,mx 0 0

Cθy, fx 0 0 0 Cθy,my Cθy,mz

Cθz, fx 0 0 0 Cθz,my Cθz,mz

 (13)

where:

Cx, fx = R
(

θ

βnGA + R2(3/2θ−2 sin(θ)+1/2 cos(θ)sin(θ))
GJ + R2(−1/2 cos(θ)sin(θ)+1/2θ)

EIm

)
Cx,my =Cθy, fx = R

(
R(sin(θ)−1/2 cos(θ)sin(θ)−1/2θ)

GJ − R(−1/2 cos(θ)sin(θ)+1/2θ)
EIm

)
Cx,mz =Cθz, fx = R

(
−R(1/2(cos(θ))2−cos(θ))

GJ +1/2 R(cos(θ))2

EIm

)
Cy, fy =

R
(

1/2 cos(θ)sin(θ)+1/2θ

EA + −1/2 cos(θ)sin(θ)+1/2θ

βmGA + R2(3/2θ−2 sin(θ)+1/2 cos(θ)sin(θ))
EIn

)
Cy, fz =Cz, fy = R

(
1/2 (cos(θ))2

EA −1/2 (cos(θ))2

βmGA +
R2(1/2(cos(θ))2−cos(θ))

EIn

)
Auth

or'
s v

ers
ion



6 Parvari Rad et al.

Cy,mx =Cθx, fy =
R2(θ−sin(θ))

EIn

Cz, fz = R
(
−1/2 cos(θ)sin(θ)+1/2θ

EA + 1/2 cos(θ)sin(θ)+1/2θ

βmGA + R2(−1/2 cos(θ)sin(θ)+1/2θ)
EIn

)
Cz,mx =Cθx, fz =−

R2 cos(θ)
Ein

Cθx,mx =
Rθ

EIn

Cθy,my = R
(

1/2 cos(θ)sin(θ)+1/2θ

GJ + −1/2 cos(θ)sin(θ)+1/2θ

EIm

)
Cθy,mz =Cθz,my = R

(
1/2 (cos(θ))2

GJ −1/2 (cos(θ))2

EIm

)
Cθz,mz = R

(
−1/2 cos(θ)sin(θ)+1/2θ

GJ + 1/2 cos(θ)sin(θ)+1/2θ

EIm

)
A=wt, Im = 1/12 tw3, In = 1/12wt3,J = Im + In = 1/12wt

(
t2 +w2

)
In particular, with reference to Fig. 5, R,θ ,w, t represent the radius of the hinge
centroid with respect to the global coordinates, the angle of the centroid from the
free to the fixed end, the hinge width and thickness respectively.

3 Numerical Example and Model Validation

As a case study, the compliant behavior of the CCBF and of the SBF depicted in
Fig. 1 and Fig. 2 are numerically evaluated. As for the CCBF, the following ge-
ometric parameters are considered, namely R = 30mm, t = 1.2mm,w = 6mm and
θ = π/4. The flexure hinge connects two rigid links located at a distance l =
2Rsin(θ/2) and is made of Acrylic Plastic with Young’s modulus E = 3000Mpa,
Poisson’s ratio ν = 0.33, shear modulus G = 1130Mpa and the shear deformations
being neglected. The principal hinge compliance [3] for the considered application
is Cθx,mx = 12Rθ

/
Ewt3 = 9rad/Nm. The method described in Sec. 2 is used for

computing the overall CCBF compliance matrix, whereas Finite Element Analysis
(FEA) is performed in order to validate the theoretical model. Figure 6 depicts, as
an example, the CCBF undeformed and deformed shapes when subject to a flexural
moment applied on the hinge free end. Similar FEA simulations are carried out by
individually loading the CCBF at the free end for each component of the load P
(that is individual forces and moments are applied) and obtaining the corresponding
deformations (displacements and rotations). The ratio between each load and defor-
mation component simply represents the compliance factors along different axes.
The overall numerical results are shown in Tab. 1, which also depicts the percentage
error between analytical and FEA methods. A maximum percentage error of less
than 3% confirms the validity of the proposed modeling technique.
The same procedure is then applied to compute the SBF compliance matrix whose
analytical solution is known from the literature [11]. As said, the SBF is designed so
as to connect the same rigid links of the previous example and to provide the same
principal compliance as the CCBF previously modeled. Henceforth, the SBF length
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Table 1 Compliance factors for the CCBF flexure hinge and comparison between analytical and
FEA results
Compliance factors Cx, fx Cx,my =Cθy, fx Cx,mz =Cθz, fx Cy, fy Cy, fz =Cz, fy Cθx,mx

Analytic 8.001e-5 3.016e-4 -5e-3 1.466e-4 4.483e-4 9.0903
FEA 7.746e-5 3.015e-4 -4.99e-3 1.457e-4 4.457e-4 9.0897

Percentage error 3.3 4.7e-2 6e-2 5.9e-1 5.8e-1 4.9e-4
Compliance factors Cz, fz Cz,mx =Cθx, fz Cy,mx =Cθx, fy Cθy,my Cθy,mz =Cθz,my Cθz,mz

Analytic 1.5e-3 1.017e-1 2.72e-2 8.256e-1 -1.797e-1 4.662e-1
FEA 1.486e-3 1.017e-1 2.72e-2 8.271e-1 -1.803e-1 4.664e-1

Percentage error 3.4e-1 0 0 1.8e-1 3.2e-1 4.5e-2

Fig. 7 3D bar representation for the compliance
matrix of the CCBF

Fig. 8 3D bar representation for the compliance
matrix of the SBF

is l = 2Rsin(θ/2), the SBF principal compliance is Cθx,mx = 12l
/

Ewt3 = 9rad/Nm,

whereas the SBF thickness, t, is chosen accordingly as t = t
(
2sin(θ/2)

/
θ
)1/3.

The numerical values of the compliance matrix entries are depicted in Fig. 7 and
Fig. 8 respectively. Similarly to [3], this 3D bar graph representation allows a qual-
itative comparison of the hinge behavior in terms of selective compliance. It can be
noticed that, in this particular case, the two solutions behave similarly. However,
CCBF outperforms SBF in terms of maximum achievable principal rotation. In fact,
these maximum rotations might be respectively computed as αCCBF = max(α1,α2)
and αSBF = 2lSY

/
tE, the term SY being the material yield strength [11] and the

terms α1 and α2 being defined in Eq. 14, such that αCCBF/αSBF > 1.

α1 =
6R(t +R)Syθ

(
−2t +(t +2R)Log

[ t+R
R

])
t2E
(
−t +(t +R)Log

[ t+R
R

]) ;α2 = 6E−1RSyθ

(
t +2R

t2 +
1

−t +RLog
[ t+R

R

])
(14)Auth
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4 Conclusions

The closed-form compliance equations for CCBF have been presented and validated
via FEA. A comparison has been carried out between CCBF and SBF for possible
application in serial articulated chains, like robotic fingers. For this particular case,
it is observed that the hinge compliance matrices are very similar, when comparing
solutions having the same value of the principal compliance and connecting rigid
links located at the same relative distance. Nonetheless, CCBF outperforms SBF in
terms of maximum achievable principal rotation. Future work includes a detailed
analysis of the CCBF properties as a function of the hinge geometrical parameters
and an in-depth investigation of the hinge behavior in the large displacement range.
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