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Abstract This paper presents a closed-form solution to the four-position synthesis
problem by using a spatial slider, which is a spatial dyad of two perpendicularly
intersected cylindrical joints. We utilize the dialytic elimination method to simplify
the synthesis equations and to obtain a univariate ninth degree polynomial equation.
Among the nine sets of solutions, two of them are infinite, and one is the displace-
ment screw from the first position to the second position. Therefore, we have at
most six real solutions that can be used to design spatial sliders for the four-position
synthesis problem. A numerical example is provided in to demonstrate the validity
of the solution procedure.

Key words: Spatial slider, cylindrical joint, rigid-body guidance, dialytic elimina-
tion.

1 Introduction

The rigid-body guidance problem is the central problem in kinematic synthesis of
linkages. In planar kinematics, given several positions of a body, one can design a
crank or a slider to guide the body through the prescribed positions [1, 2]. Spatial
counterpart of the planar synthesis problem has been extensively studied too; various
spatial dyads have been investigated for rigid-body guidance [3, 4, 8]. This paper
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focuses on the spatial generalization of the planar slider, and we investigate the
solution to the synthesis equations of the special cylindrical-cylindrical dyad, with
the joint axes perpendicularly intersected, for rigid body guidance.

By using screw geometry, the spatial generalization of the synthesis of the planar
crank has led to elegant geometric and algebraic results in computational kinemat-
ics [3, 5, 6]. Built upon these results, this paper utilizes a special screw triangle [4]
to derive synthesis equations of the spatial slider and seeks to find all possible so-
lutions to the design equations. However, due to the complexity of the equations,
analytical solutions cannot be obtained. Instead, we utilize the dialytic elimination
method [7] to find a closed-form solution, in which a univariate polynomial equa-
tion is obtained. The degree of the polynomial equation is the number of all possible
solutions; however, we may need to exclude some extraneous roots.

This paper is organized as follows: first, we derive the synthesis equations and
show that the maximum number of design positions is four. Second, we divide the
equations into two uncoupled groups and use one of them to solve for the direction
vectors of the joints. To further simplify the solution procedure, we superimpose two
three-position problems instead of solving a four-position problem. Third, based on
the obtained solutions of the direction vectors, we utilize the second group of equa-
tions to obtain the position vectors of points on the joint axes. Finally, a numerical
example is provided to verify the solution procedure.

2 Design Equations for the Synthesis of Spatial Sliders

Figure 1 shows a spatial slider guiding a rigid body from one position to another.
The spatial slider consists of two perpendicularly intersected cylindrical joints. The
ground (fixed) and moving joints are denoted by F and M1, respectively. Let the dis-
placement screw for displacing the body from position Σ1 to position Σ2 be denoted
by $ 12, and the rotation and translation parameters be θ12 and d12, respectively. The
direction vector of $ 12 is denoted by ŝ12, and the position vector of a point on $ 12
is denoted by A12. The geometry of the relation among F , M1, and $ 12 is a special
screw triangle illustrated in Figure 2. The following equations can be obtained based
on the geometric relation of the screw triangle [4]:

F̂ ·M̂1 = 0 (1)

F̂ · (ŝ12×M̂1)+ tan
θ12

2
(F̂× ŝ12) · (ŝ12×M̂1) = 0 (2)

F̂ · (Q1×M̂1)+M̂1 · (G× F̂) = 0 (3)

[1− (ŝ12 · F̂)2] · {[ŝ12− (ŝ12 ·M̂1)M̂1] · (Q1−A12)}− [1− (ŝ12 ·M̂1)2] · {[ŝ12

−(ŝ12 · F̂)F̂] · (G−A12)}+
d12

2
[1− (ŝ12 · F̂)2] · [1− (ŝ12 ·M̂1)2] = 0

(4)

M̂2
1 = m2

1x +m2
1y +m2

1z = 1 (5)
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F̂2 = f 2
x + f 2

y + f 2
z = 1 (6)

M̂1 ·Q1 = m1x ·q1x +m1y ·q1y +m1z ·q1z = 0 (7)

F̂ ·G = fx ·gx + fy ·gy + fz ·gz = 0 (8)

Note that we use the symbol ˆ to denote unit vectors or unit screws. The unknowns in
the above equations are the direction vector of the moving joint M̂1(m1x,m1y,m1z),
the position vector of a point on the moving axis Q1(q1x,q1y,q1z), the direction vec-
tor of the fixed joint F̂( fx, fy, fz), and the position vector of a point on the fixed axis
G(gx,gy,gz). Eqs. (1) and (3) indicate that the joint axes are intersected perpendicu-
larly. Eqs. (7) and (8) constrain the points on the axes in such a way that the position
vectors of the points must be perpendicular to the joint direction vectors.

� ���

Fig. 1 A rigid body guided by a spatial slider
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Fig. 2 Screw geometry of the spatial slider

There are 12 unknowns but only eight equations; therefore, we can specify two
more positions by displacement screws $ 13 (with rotation θ13 and translation d13)
and $ 14 (with rotation θ14 and translation d14). As a result, we have four more design
equations as follows:

F̂ · (ŝ13×M̂1)+ tan
θ13

2
(F̂× ŝ13) · (ŝ13×M̂1) = 0 (9)

F̂ · (ŝ14×M̂1)+ tan
θ14

2
(F̂× ŝ14) · (ŝ14×M̂1) = 0 (10)

[1− (ŝ13 · F̂)2] · {[ŝ13− (ŝ13 ·M̂1)M̂1] · (Q1−A13)}− [1− (ŝ13 ·M̂1)2] · {[ŝ13

−(ŝ13 · F̂)F̂] · (G−A13)}+
d13

2
[1− (ŝ13 · F̂)2] · [1− (ŝ13 ·M̂1)2] = 0

(11)

[1− (ŝ14 · F̂)2] · {[ŝ14− (ŝ14 ·M̂1)M̂1] · (Q1−A14)}− [1− (ŝ14 ·M̂1)2] · {[ŝ14

−(ŝ14 · F̂)F̂] · (G−A14)}+
d14

2
[1− (ŝ14 · F̂)2] · [1− (ŝ14 ·M̂1)2] = 0
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3 Solutions of Direction Vectors of the Joint Axes

The 12 design equations are too complicated to be solved simultaneously. How-
ever, we can deal with only three positions at a time and superimpose two three-
position problems. For example, we can first design the spatial slider to guide the
body through positions 1, 2, and 3 and then design the spatial slider to guide the
body through positions 1, 2, and 4. Notice that the 12 equations can be decoupled
by first solving Eqs. (1), (2), (5), (6), (9), and (10) for the direction vectors. We can
then utilize the remaining equations to solve for the position vectors.

For positions 1, 2, and 3, substituting Eq. (1) into Eqs. (2) and (9) and rearranging
the equations gives:

[ŝ12×M̂1 + tan
θ12

2
(ŝ12 ·M̂1)ŝ12] · F̂ = 0 (13)

[ŝ13×M̂1 + tan
θ13

2
(ŝ13 ·M̂1)ŝ13] · F̂ = 0 (14)

We can rearrange Eqs. (1), (13), and (14) in a matrix form as follows:

[
Km

]



fx
fy
fz


 =




0
0
0


 (15)

Note that the unit direction vectors of the specified screws ŝ12(s12x,s12y,s12z) and
ŝ13(s13x,s13y,s13z) are known parameters. For the linear system, Eq. (15), to have
non-trivial solutions, the determinant of Km must be zero:

det(Km)123 = M̂1 · {[ŝ12×M̂1 + tan
θ12

2
(ŝ12 ·M̂1)ŝ12]

×[ŝ13×M̂1 + tan
θ13

2
(ŝ13 ·M̂1)ŝ13]}

= 0

(16)

Expanding the determinant gives:

a1m1xm2
1y +a2m2

1xm1y +a3m3
1x +a4m3

1y +a5m2
1xm1z +a6m2

1ym1z

+a7m1xm1ym1z +a8m1xm2
1z +a9m1ym2

1z +a10m3
1z = 0

(17)

where the coefficients ai, i = 1,2, . . .,10, are functions of known parameters.
Similarly, for positions 1, 2, and 4, we obtain the following equation by solving
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det(Km)124 = M̂1 · {[ŝ12×M̂1 + tan
θ12

2
(ŝ12 ·M̂1)ŝ12]

×[ŝ14×M̂1 + tan
θ14

2
(ŝ14 ·M̂1)ŝ14]}

= 0

(18)

Expanding the above equation gives

b1m1xm2
1y +b2m2

1xm1y +b3m3
1x +b4m3

1y +b5m2
1xm1z +b6m2

1ym1z

+b7m1xm1ym1z +b8m1xm2
1z +b9m1ym2

1z +b10m3
1z = 0

(19)

where the coefficients bi, i = 1,2, . . .,10, are functions of known parameters.
Next, we employ the dialytic elimination method [7] to seek a closed-form so-

lution of M̂1(m1x,m1y,m1z). For the purpose of employing the dialytic elimination
method, we denote Eqs. (17) and (19) with f1 and f2. In addition, to simplify the
notations for the dialytic elimination process, let m1x = x, m1y = y, m1z = z. We have

f1 : a1xy2 +a2x2y+a3x3 +a4y3 +a5x2z+a6y2z

+a7xyz+a8xz2 +a9yz2 +a10z3 = 0
(20)

f2 : b1xy2 +b2x2y+b3x3 +b4y3 +b5x2z+b6y2z

+b7xyz+b8xz2 +b9yz2 +b10z3 = 0
(21)

Note that f1 and f2 are homogeneous equations. Letting y = px and z = qx and
substituting them into f1 and f2 gives:

f1 : a1 p2 +a2 p+a3 +a4 p3 +a5q+a6 p2q

+a7 pq+a8q2 +a9 pq2 +a10q3 = 0
(22)

f2 : b1 p2 +b2 p+b3 +b4 p3 +b5q+b6 p2q

+b7 pq+b8q2 +b9 pq2 +b10q3 = 0
(23)

Suppressing the variable p into the coefficients gives:

f1 : A0q3 +A1q2 +A2q+A3 = 0 (24)

f2 : B0q3 +B1q2 +B2q+B3 = 0 (25)

Manipulating f1 and f2 in the following manners yields three equations:

f1×B0− f2×A0 : (A1B0−B1A0)q2 +(A2B0−B2A0)q+(A3B0−B3A0) = 0
(26)

f1×B3− f2×A3 : (A0B3−B0A3)q2 +(A1B3−B1A3)q+(A2B3−B2A3) = 0
(27)

f1× (B0 ·q+B1)− f2× (A0 ·q+A1) : (A2B0−A0B2)q2

+(A2B1−A1B2 +A3B0−A0B3)q+(A3B1−A1B3) = 0
(28)
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Rearranging Eqs. (26)-(28) in a matrix form gives:



(A1B0−B1A0) (A2B0−B2A0) (A3B0−B3A0)
(A0B3−B0A3) (A1B3−B1A3) (A2B3−B2A3)
(A2B0−A0B2) (A2B1−A1B2 +A3B0−A0B3) (A3B1−A1B3)






q2

q
1


 = 0

(29)
Again, to have non-trivial solutions of q, the determinant of the coefficient matrix

must be zero, which gives a ninth degree polynomial equation in p. Upon substitut-
ing the solution of p into Eq. (29), we obtain a corresponding q. Substituting the
values of p and q into Eq. (5) gives:

x = m1x =
√

1/(1+ p2 +q2) (30)

which leads to the direction vector M̂1 = (m1x,m1y,m1z) = (x,y,z) = (x, px,qx).
Among the nine sets of solution of p and q, there are two complex-number solu-

tions satisfying the following constraint:

p2 +q2 =−1 (31)

which leads to two infinite solutions of M̂1(m1x,m1y,m1z). One of the remaining
seven sets of solution is ŝ12(s12x,s12y,s12z), which cannot be used for the moving
joint. Therefore, we have a total of six finite solutions of M̂1(m1x,m1y,m1z). Substi-
tuting each solution of M̂1(m1x,m1y,m1z) into Eqs. (1), (2), and (6) gives a corre-
sponding F̂( fx, fy, fz).

4 Solutions of Position Vectors and Numerical Example

Once the solutions of direction vectors are obtained, we can substitute them into Eqs.
(3), (4), (7), (8), (11), and (12) to solve for the position vectors Q1(q1x,q1y,q1z) and
G(gx,gy,gz). First, we rearrange Eqs. (3), (4), (8), and (11) in to a matrix form as
follows:

[
Kq

]



gx
gy
gz
1


 =




0
0
0
0


 (32)

where Kq is of the following form

Kq =




fx fy fz 0
kq21 kq22 kq23 kq24
kq31 kq32 kq33 kq34
kq41 kq42 kq43 kq44


 (33)Auth
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In order for Eq. (32) to have non-trivial solutions, the determinant of Kq must be
zero, which gives the following linear equation in (q1x,q1y,q1z):

k1q1x + k2q1y + k3q1z + k4 = 0 (34)

where the coefficients ki, i = 1,2,3,4, contain the specified parameters and the di-
rection vectors previously solved. Similarly, we obtain another linear equation by
using Eqs. (3), (4), (8), and (12):

k5q1x + k6q1y + k7q1z + k8 = 0 (35)

where the coefficients ki, i = 5,6,7,8, contain the specified parameters and the direc-
tion vectors previously solved. Now we have three linear equations, Eqs. (7), (34),
and (35), allowing us to obtain a unique solution of (q1x,q1y,q1z). Finally, we can
use Eqs. (32) to obtain the corresponding solution of (gx,gy,gz).

In what follows, we provide a numerical example to verify the solution procedure
discussed above. Table 1 gives three displacement screws denoting four positions of
a body. Following the discussed solution procedure, we obtain six real solutions,
as listed in Table 2. Note that in this case, we have six real solutions, while other
specifications may yield only four, two, or zero real solutions.

Table 1 Displacement screws for the four specified positions

Screw Direction vector Position vector of a point Translation Rotation

12 (0.103, 0.737, -0.668) (0.941, 0.521, -0.419) 1.384 183.616◦
13 (-0.208, -0.838, -0.505) (-0.610, 0.837, 0.123) 1.899 178.431◦
14 (-0.832, 0.261, 0.490) (0.733, 0.689, -0.164) -1.117 234.494◦

5 Conclusion

This paper presents the solution of the spatial slider for guiding a rigid body to pass
through four positions. By using screw triangle geometry, we obtained 12 equations
to solve for 12 unknowns that determine a perpendicularly intersected cylindrical-
cylindrical dyad. In order to seek a closed-form solution, we decoupled the equa-
tions into two groups and solved the direction vectors using one of the groups. The
position vectors of points on the cylindrical joint axes were obtained by solving the
second group of design equations.

By using the dialytic elimination method, we obtained a ninth degree polynomial
equation that led to nine possible solutions. Among the nine sets of solutions, two
of them are infinite, and one is the displacement screw from the first position to the
second position. Therefore, we have at most six real solutions that can be used to
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Table 2 Solution to the synthesis equations

Solution# F̂( fx, fy, fz) G(gx,gy,gz)

1 (-0.6917, 0.5429, 0.4762) (0.2110, 0.1513, 0.1341)
2 (0.3975, 0.5431, 0.7396) (1.9873, 0.4768, -1.4183)
3 (-0.3927, 0.7106, 0.5838) (-0.8295, 0.7632, -1.4870)
4 (-0.1186, -0.5320, 0.8384) (-6.4081, -1.8656, -2.0903)
5 (-0.9773, 0.1780, 0.1149) (0.2275, 0.9293, 0.4961)
6 (-0.0933, -0.6980, 0.7100) (7.5762, -1.0020, 0.0105)

M̂1(m1x,m1y,m1z) Q1(q1x,q1y,q1z)

1 (-0.1323, 0.5529, -0.8227) (-1.6848, 1.6638, 1.3892)
2 (-0.8434, -0.1013, 0.5277) (-0.1331, 0.1786, -0.1784)
3 (-0.1029, -0.7372, 0.6678) (-1.8024, 0.9896, 0.8147)
4 (0.9900, 0.0011, 0.1407) (-0.9567, -6.8947, 6.7816)
5 (0.2009, 0.9508, 0.2358) (-1.3157, 0.1772, 0.4061)
6 (0.9863, -0.1622, -0.0298) (0.6223, 4.5468, -4.1465)

design spatial sliders for four-position problems. Notice that the solution procedure
and result given in this paper are comparable to those in the synthesis of a planar
slider.
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