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Single Exponential Motion and Its Kinematic
Generators

Guanfeng Liu, Yuangin Wu, and Xin Chen

Abstract Both constant velocity (CV) joints and zero-torsion pagtinematic ma-
chines (PKMs) possess special geometries in their subehairey are studied as
two different subjects in the past literature. In this paperprovide an alternative
analysis method based on the symmetric producsB(8) (the Special Euclidean
group). Under this theoretical framework CV joints and zemsion mechanisms
are unified intosingle exponential motion generatodfSEMG). The properties of
single exponential motion are studied and sufficient céomitare derived for the
arrangement of joint screws of a serial chain so that theangtattern of the result-
ing mechanism is indeed a single exponential motion gemerat

Key words: Constant velocity transmission; zero torsion,symmeuacpct, single
exponential motion generator.

1 Introduction

Constant velocity (CV) joints have found applications ireaigty of domains, rang-
ing from car drive chains to rotation transmissions in DEL#rallel robot. They
have received great research interests from the robotatsn@mechanism communi-
ty since 1970s. Hunt [7] developed a general theory for aiglgnd synthesis of
CV joints using screw theory . He found that CV couplings cobé realized by
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kinematic chains with special geometry that their jointsak@m a symmetric ar-
rangement with respect to a plane. Carricato [4] examine@timputational detail
of three differenttypes of CV couplings:@ — % ; (i) #Z — . — Z whereZ stands
for revolute joint, and¥ for spherical or ball joint; (ii)Z — 2L — % where 2L
denotes planar gliding joint. He also showed the importalesrof CV couplings
in the construction of close-chain orientational manipuisiwith simple and diag-
onal velocity Jacobian, for which he coined the tetetoupled and homokinemtic
transmission

Recently, not only the spatial structure of the CV joints hlso their motion
patterrt, usually described by the set of motions of the output shift vespect to
the input shaft, received the attention of robotics redearc Bonev [3] proposed a
modified Euler angle parametrization, the tilt and torsingle, for studying a class
of CV joints with PKM structures. He noticed that the torsagles for these mech-
anisms are always zero (hence the name zero-torsion meaignand showed that
their forward kinematics map as well as their singularityi leave closed form [3, 1].
Zero-torsion property seems a more general concept tharoGpiag although the
latter necessarily implies the former. Besides the CV gitlitere are differentexam-
ples exhibiting zero-torsionness. The first example comzen the study of humuan
eye movement. Donders (1848) first noticed that human eylgsheame 2 DoFs be-
cause its orientation is uniquely determined by the lineighits[6]. This 2-DoF
motion is zero-torsion because its instantaneous velsaitigfies the Listing’s law
2[6]. Another example is human shoulder, whose motion pati®mot simply a
ball-in-socket joint. Rosheim [9] noticed that human slioghould be modeled, in-
stead of a ball-in-socket joint, as an omni-wrist, which évgp a parallel kinematic
structure with 4 identicaly — % subchains, wheré/ stands for universal joints.
This omni-wrist uses CV couplings, and are therefore zersian.

The goal of this paper is to extend the theory about CV joint$ zero-torsion
PKMs with the purpose to put them in a unified theoretical famrk, and develop
tools for analyzing high-dimensional counterparts. Rirstfound that the symmet-
ric arrangement of joint screws of a serial chain implies msetric product of
screw motions in its forward kinematics. Then we show thaegex at singularities
symmetric products of screw motions for twists in some sgi@tasses of subspaces
of the Lie algebrae(3) could be turned into a single exponential 8&(3). Final-
ly we show the sufficient conditions for a serial chain beingjragle exponential
motion generator.

2 Exponential Map, POE, and Zero-Torsion Mechanisms

It is well known that the Special Euclidean groG&(3) is a 6-dimensional Lie
group. It could be used to describe the relative position@rehtation of the end-

1 Sometimes motion pattern is also called motion type.

2 The Listing’s law about human eye movement, also calleslhalf-angle law states that the
instantaneous velocity plane tilts exactly one half of tifathe line of sight.
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effector of a robot with respective to a fixed world frame. Téregent spac&SE(3)

of SE(3) at the identity elemere consists of the set of feasible twists of the end-
effector.TeSE(3) satisfies the conditions of being a Lie algebra, and is oftsroted
ass€g3). The exponential map:

exp :s€3) — SE(3): & e 1)

is a surjective map and gives a screw motiorS#i3) [8]. The forward kinematics
map of a serial articulated chain of lower pairs is given by phoduct of exponen-
tials (POE) formula [8]

Owt = 63191 .63292 .. egkek 2)

whereé; € sg3) is the twist for jointi, and 6 the corresponding joint angle. In
other words the kinematic map (2) is a cascaded compositiecrew motions. The
definition for a zero-torsion mechanism is originally basadhe formulation of the
tilt-and-torsion parametrization of robot orientati@nf2],

R=e%0. ¢, (3)

wheree®? denotes a rotation of about the axigv € R3, again in terms of the
exponential on the rotation grog0(3). w lies in a plane with the normal vectar
0 anda are referred to as the tilt and torsion angles respectivéky.set of rotations
is zero-torsion ifd =0, i.e., the orientation set is described by a single expimaien
For a 2-DoF orientational serial manipulator with two pemgieular joint axes, its
torsion angle is obviously not always zero, Batas seen from its forward kinematic
map

Ryt = €161 . 262 4)

In fact we could make the same conclusion as long as the twe @xand w;
are not parallél Although zero-torsionness is a concept originally defiferd2-
DoF orientational mechanisms, the idea of using single e&ptial formulation (3)
could be generalized and applied to-manipulators with caetbiranslational and
rotational motion.

3 Single Exponential Motion and Its Kinematic Generators

Consider the set of motions defined by

3 According to the Baker-Cambell-Hausdoff formula, we have
610160202 _ o1 01+@p0+ 3 (1, 02)616,+O(6F.6F)

which is not a single exponential of a twist in the plaf@;,d»}, but a twist in the three-
dimensional Lie algebrddo, &y, &, @]}, which is the Lie algebrao(3) of the rotation group

SqQ).
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e? C SE(3) (5)

whereQ is a linear subspace &g3). It is trivial when Q is a Lie subalgebra of
sg3) ase”? will be simply a Lie subgroup in this case. In other cagBsmay or
may not be a submanifold depending on whetesatisfies some conditions.

3.1 LieTriple System

Definition 1. A linear vector subspacd® of sg3) (not necessarily a Lie subalgebra)
is said to be a Lie triple system (LTS) if it is closed under tluaible Lie bracket

L4
V0,0,W € Q,[6,[0,W]] € Q 6)

The Lie subalgebras «fg3) are trivial examples of LTS. But there are nontrivial
examples. Le{éy,---,&} be the canonical basis e§3).

Example 1 (The Instantaneous 2R Motion Tydle subspac€r = {€4,6} is
a linear combination of the instantaneous rotations abweiktand y axis. This
subspace is a LTS, but not a Lie subalgebraeiB).

Example 2 (The Instantaneous 1T2R Motion Ty@®nsider adding an instanta-
neous translational Doz into Qg SO a new subspace;tor forms

Qi7or = {€3,64,65}.

Qi1oris a LTS by verifying that its basis.indeed satisfies (6)

(€3, [84,85]] =0,[€,[€3,84]] = &
(€4, [€3,65]] =0, &, [€3,&]] = O
(€5, [€3,65]] = €3

We have the following main theorefregarding the manifold property of the mo-
tion set (5).

Theorem 1.1f Q € se(3) is a Lie triple system,‘¢is a differential submanifold of
SE(3), and isreferred to as a single exponential submanifold {SES

Example 3 (The 2R and 1T2R Motion PatterBjnce Qo and Qi1or are LTS as
proved in the previous examples, bafPer ande®12R are SES. The former is ex-
actly the set of motions generated by a 2-DoF orientatioratipulator with zero
torsion angles [3].

4,1,]] could be replaced by, ],] based on the Jacobian identity on any Lie algebra.
5 Its proof can be found in [5](Theorem 7.2, Chapter IV)
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3.2 Symmetric Products

Consider a SE®® for some LTSQ c sg3) of dimensionk < 6. We have the
following main result about SES

Proposition 1 (symmetric product) Let (3,0, be two vectors in a LT®, then
ghbghbeghibl c 6@ g, 6, € R. (7)

el01gh202600 j5 called asymmetric producdf €282 by g,

Readers are referred to [5] (Chapter IV and its exerciseshéoproof. Proposition 1
only states that symmetric products of screw motions in ai®Ef#in on it. It is not
known if the resulting composition of screw motions indeetdigrates the desired
SES.

Proposition 2 (Single Exponential Motion Generator) Let 0y, -- -, Gk be the ba-
sis of the LTS2, then the k-layer symmetric products

glibr .. glk-16k-1g0kOkglk-16k-1 ... gl161 eQ7 VoL, -, B ER. (8)

generates the SE® 6f the Jacobian of (8) is non-singular.

The proof of this proposition could be deduced using the ieitglinction theorem.
(8) is ak-layer symmetric product. In fact symmetric products witbrenthank
layers also generate the same SES as long as the set of idéapénists forms a
basis ofQ and the Jacobian is non-singular.

3.3 Single Exponential Motion Generators

SES are special subsets SE(3) which;, to the best of our knowledge, have not
been sufficiently studied by robotics researchers. It isatdiral interest to find their
kinematic generators, i.e., mechanisms whose task spamhesahe given SES.
Hence the name single exponential motion generator (SEMKI&Ws. The 2-DoF
orientational PKM with zerotorsion angles in [3] and the awwnist [9] are example
SEMG of e?®_Both of them employ CV couplings in their kinematic struetu
Here we use the method of symmetric products to derive tHeciguit conditions
for a serial chain being a SEMG.

Now consider a serial chain with a generic forward kinemaiap (2). According
to Proposition 2, this chain generates some SES of dimeksfanhas the form of
multi-layer symmetric products and moreover its Jacobsamain-singular and has
rankk. The twist coordinaté; describes the spatial location of the joint axat a
given configuration. Itis given by a rigid displacement (agzding of rigid motions
generated by all previous joints) of the correspondingghitvist ;.
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1= AdyQ1
52 = Adgog]_ZZ

Sk = Adgog, g1 {k
whereg; = eZi"i, ai €R,i=1,--- k andAdy denotes the adjoint map of an element

g € SE(3). Without loss of generalitgy could be chosen to be the identigye
SE(3). Substituting them into (2) yields

Owt = Goe¥%gy - - gk _oe%-10-1g, 1ekbkg L ... gL,

Lemma 1. Equation (2) is a symmetric product if and only if

% =940 5% %" 9)
G =qkris =1,k (10)
6 = Br1i (11)
Ui = Ok—i, i=l,---,k, . (12)

Employing Eqn.(9)-(12), the twists in (2) are calculated as

&1 = Adg, (1 (13)
52 = Adgogl ZZ (14)
f= (15)

ém = Adgogl'“gm—lzm (16)
'Sm+1 = Adgogl---ngerl (17)
Em+2 = Adgalgil"'g;}m,25k7m71 (18)
= (19)
é1= Adgalgl—lzz (20)
Sk = Ady 101 (21)

wherem = |k/2| denotes the greatest integer less than or equif2o The set
of consecutive twist§&1,-- -, &} forms a special arrangement because there is a
kind of symmetry between pairs of twist&;, &k 1) (i =1,---,k). Moreover the
instantaneous velocity space of the chain is calculat®d as {\W, W, - - - }, where

Wi = &+ &= (Ady, +Ad961)Z1
Wa = &2+ &k-1 = (Adgog, +Ady 15-1) 02
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The dimension oWV is eitherm (if k is even) orm+ 1 (if k is odd). & and &, 1
(i=1,---,m) are symmetric with respect to the hyperplévie sg3), andéy 1 € W
in case that m is odd. This result could be considered as ageation of Hunt’s
theory about CV couplings where the joint axes are requdsbtsymmetric about
a plane inR3, while here the symmetry is with respect to a hyperplareg(8). In
this paper we call the latter symmetry as mirror symmetry.

Fig. 1 Mirror symmetry of ee172R subchainZ} = Ady, {2; &; = AnglZ2? & =Ady, &5 = Adgyg, {2;
&4 =Adg 18, = Ady 101 0o &1 = Adyy (i &5 = Ad 103 §a= Ca (G0 = €10%; gy = ),

Example 4 (Mirror symmetry of72= generators)According to Lemma 1, a serial-
chain generator af172R = {e3;e4, €5} may consist of five joints given by:

é1=Ady, {1,

52 a Adgog;LZZa
é3= (3,

éa= Adgalgzlfz,
és = Adgalzl

go = &0 g, — el p;, {j € QiR

Notice that we could simply let the initial set of twists fe= &4, {» = es5, and
{3 = &3, and then applying rigid displacememgtsandg; yields a new set of mirror
symmetric twists[; }, as shown in Fig. 1.

Finally we have the following theorem for SEMG

Theorem 2.Let €? be an m-dimensional SES. A serial chain consisting-efm
or 2m+ 1joints is a SEMG of 8 if there exists a configuratiof®y, - - - , 6) at which
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the set of screwséq, - -+, &} is mirror symmetric abou® C se(3) and the space W
spanned by &1, --- , &} satisfies W= Q, and moreoveft = 6,1 j,i=1--- ,mis
kept valid by imposing suitable constraints (usually byrforg closed-loops).

4 Conclusion

In this paper we generalize the previous results about Cylomyiand zero-torsion
mechanisms and unify them into single exponential motioregators. We develop
the tool of symmetric product and Lie Triple System for amalg the properties
of single exponential submanifolds, and use them to dehigestfficient conditions
for single exponential motion generators. Examples arekegout to verify the
developed theories.
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