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Abstract Both constant velocity (CV) joints and zero-torsion parallel kinematic ma-
chines (PKMs) possess special geometries in their subchains. They are studied as
two different subjects in the past literature. In this paperwe provide an alternative
analysis method based on the symmetric product onSE(3) (the Special Euclidean
group). Under this theoretical framework CV joints and zero-torsion mechanisms
are unified intosingle exponential motion generators(SEMG). The properties of
single exponential motion are studied and sufficient conditions are derived for the
arrangement of joint screws of a serial chain so that the motion pattern of the result-
ing mechanism is indeed a single exponential motion generator.

Key words: Constant velocity transmission, zero torsion,symmetric product, single
exponential motion generator.

1 Introduction

Constant velocity (CV) joints have found applications in a variety of domains, rang-
ing from car drive chains to rotation transmissions in DELTAparallel robot. They
have received great research interests from the robotics and mechanism communi-
ty since 1970s. Hunt [7] developed a general theory for analysis and synthesis of
CV joints using screw theory . He found that CV couplings could be realized by
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kinematic chains with special geometry that their joint axes form a symmetric ar-
rangement with respect to a plane. Carricato [4] examined the computational detail
of three different types of CV couplings:(i)U −U ; (ii) R−S −R whereR stands
for revolute joint, andS for spherical or ball joint; (iii)R −PL−R wherePL
denotes planar gliding joint. He also showed the important roles of CV couplings
in the construction of close-chain orientational manipulators with simple and diag-
onal velocity Jacobian, for which he coined the termdecoupled and homokinemtic
transmission.

Recently, not only the spatial structure of the CV joints butalso their motion
pattern1, usually described by the set of motions of the output shaft with respect to
the input shaft, received the attention of robotics researchers. Bonev [3] proposed a
modified Euler angle parametrization, the tilt and torsion angle, for studying a class
of CV joints with PKM structures. He noticed that the torsionangles for these mech-
anisms are always zero (hence the name zero-torsion mechanisms), and showed that
their forward kinematics map as well as their singularity loci have closed form [3, 1].
Zero-torsion property seems a more general concept than CV coupling although the
latter necessarily implies the former. Besides the CV joints, there are different exam-
ples exhibiting zero-torsionness. The first example comes from the study of humuan
eye movement. Donders (1848) first noticed that human eyes only have 2 DoFs be-
cause its orientation is uniquely determined by the line of sight [6]. This 2-DoF
motion is zero-torsion because its instantaneous velocitysatisfies the Listing’s law
2[6]. Another example is human shoulder, whose motion pattern is not simply a
ball-in-socket joint. Rosheim [9] noticed that human should should be modeled, in-
stead of a ball-in-socket joint, as an omni-wrist, which employs a parallel kinematic
structure with 4 identicalU −U subchains, whereU stands for universal joints.
This omni-wrist uses CV couplings, and are therefore zero-torsion.

The goal of this paper is to extend the theory about CV joints and zero-torsion
PKMs with the purpose to put them in a unified theoretical framework, and develop
tools for analyzing high-dimensional counterparts. Firstwe found that the symmet-
ric arrangement of joint screws of a serial chain implies a symmetric product of
screw motions in its forward kinematics. Then we show that except at singularities
symmetric products of screw motions for twists in some special classes of subspaces
of the Lie algebrase(3) could be turned into a single exponential onSE(3). Final-
ly we show the sufficient conditions for a serial chain being asingle exponential
motion generator.

2 Exponential Map, POE, and Zero-Torsion Mechanisms

It is well known that the Special Euclidean groupSE(3) is a 6-dimensional Lie
group. It could be used to describe the relative position andorientation of the end-

1 Sometimes motion pattern is also called motion type.
2 The Listing’s law about human eye movement, also calledthe half-angle law, states that the
instantaneous velocity plane tilts exactly one half of thatof the line of sight.
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effector of a robot with respective to a fixed world frame. Thetangent spaceTeSE(3)
of SE(3) at the identity elemente consists of the set of feasible twists of the end-
effector.TeSE(3) satisfies the conditions of being a Lie algebra, and is often denoted
asse(3). The exponential map:

exp :se(3) 7→ SE(3) : ξ̂ 7→ eξ̂ (1)

is a surjective map and gives a screw motion onSE(3) [8]. The forward kinematics
map of a serial articulated chain of lower pairs is given by the product of exponen-
tials (POE) formula [8]

gwt = eξ̂1θ1 ·eξ̂2θ2 · · ·eξ̂kθk (2)

whereξ̂i ∈ se(3) is the twist for joint i, andθi the corresponding joint angle. In
other words the kinematic map (2) is a cascaded composition of screw motions. The
definition for a zero-torsion mechanism is originally basedon the formulation of the
tilt-and-torsion parametrization of robot orientationR [2],

R= eω̂θ ·en̂α . (3)

whereeω̂θ denotes a rotation ofθ about the axisω ∈ R
3, again in terms of the

exponential on the rotation groupSO(3). ω lies in a plane with the normal vectorn.
θ andα are referred to as the tilt and torsion angles respectively.The set of rotations
is zero-torsion ifα ≡ 0, i.e., the orientation set is described by a single exponential.
For a 2-DoF orientational serial manipulator with two perpendicular joint axes, its
torsion angle is obviously not always zero, butθ2 as seen from its forward kinematic
map

Rwt = eω̂1θ1 ·eω̂2θ2. (4)

In fact we could make the same conclusion as long as the two axes ω1 and ω2

are not parallel3. Although zero-torsionness is a concept originally definedfor 2-
DoF orientational mechanisms, the idea of using single exponential formulation (3)
could be generalized and applied to manipulators with combined translational and
rotational motion.

3 Single Exponential Motion and Its Kinematic Generators

Consider the set of motions defined by

3 According to the Baker-Cambell-Hausdoff formula, we have

eω̂1θ1eω̂2θ2 = eω̂1θ1+ω̂2θ2+
1
2 [ω̂1,ω̂2]θ1θ2+O(θ2

1 ,θ
2
2 ),

which is not a single exponential of a twist in the plane{ω̂1, ω̂2}, but a twist in the three-
dimensional Lie algebra{ω̂1, ω̂2, [ω̂1, ω̂2]}, which is the Lie algebraso(3) of the rotation group
SO(3).
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eΩ ⊂ SE(3) (5)

whereΩ is a linear subspace ofse(3). It is trivial whenΩ is a Lie subalgebra of
se(3) aseΩ will be simply a Lie subgroup in this case. In other caseseΩ may or
may not be a submanifold depending on whetherΩ satisfies some conditions.

3.1 Lie Triple System

Definition 1. A linear vector subspaceΩ of se(3) (not necessarily a Lie subalgebra)
is said to be a Lie triple system (LTS) if it is closed under thedouble Lie bracket
[, [, ]]: 4

∀û, v̂, ŵ∈ Ω , [û, [v̂, ŵ]] ∈ Ω (6)

The Lie subalgebras ofse(3) are trivial examples of LTS. But there are nontrivial
examples. Let{ê1, · · · , ê6} be the canonical basis ofse(3).

Example 1 (The Instantaneous 2R Motion Type).The subspaceΩ2R := {ê4, ê5} is
a linear combination of the instantaneous rotations about the x and y axis. This
subspace is a LTS, but not a Lie subalgebra ofse(3).

Example 2 (The Instantaneous 1T2R Motion Type).Consider adding an instanta-
neous translational DoF ˆe3 into Ω2R so a new subspaceΩ1T2R forms

Ω1T2R := {ê3, ê4, ê5}.

Ω1T2R is a LTS by verifying that its basis indeed satisfies (6)

[ê3, [ê4, ê5]] = 0, [ê4, [ê3, ê4]] = ê3

[ê4, [ê3, ê5]] = 0, [ê5, [ê3, ê4]] = 0

[ê5, [ê3, ê5]] = ê3

We have the following main theorem5 regarding the manifold property of the mo-
tion set (5).

Theorem 1. If Ω ⊂ se(3) is a Lie triple system, eΩ is a differential submanifold of
SE(3), and is referred to as a single exponential submanifold (SES).

Example 3 (The 2R and 1T2R Motion Pattern).SinceΩ2R andΩ1T2R are LTS as
proved in the previous examples, botheΩ2R andeΩ1T2R are SES. The former is ex-
actly the set of motions generated by a 2-DoF orientational manipulator with zero
torsion angles [3].

4 [, [, ]] could be replaced by[[, ], ] based on the Jacobian identity on any Lie algebra.
5 Its proof can be found in [5](Theorem 7.2, Chapter IV)
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3.2 Symmetric Products

Consider a SESeΩ for some LTSΩ ⊂ se(3) of dimensionk < 6. We have the
following main result about SES

Proposition 1 (symmetric product) Let û1, û2 be two vectors in a LTSΩ , then

eû1θ1eû2θ2eû1θ1 ∈ eΩ , ∀θ1,θ2 ∈ R. (7)

eû1θ1eû2θ2eû1θ1 is called asymmetric productof eû2θ2 by êu1θ1.

Readers are referred to [5] (Chapter IV and its exercises) for the proof. Proposition 1
only states that symmetric products of screw motions in a SESremain on it. It is not
known if the resulting composition of screw motions indeed generates the desired
SES.

Proposition 2 (Single Exponential Motion Generator) Let û1, · · · , ûk be the ba-
sis of the LTSΩ , then the k-layer symmetric products

eû1θ1 · · ·eûk−1θk−1eûkθkeûk−1θk−1 · · ·eû1θ1 ∈ eΩ , ∀θ1, · · · ,θk ∈ R. (8)

generates the SES eΩ if the Jacobian of (8) is non-singular.

The proof of this proposition could be deduced using the implicit function theorem.
(8) is a k-layer symmetric product. In fact symmetric products with more thank
layers also generate the same SES as long as the set of independent twists forms a
basis ofΩ and the Jacobian is non-singular.

3.3 Single Exponential Motion Generators

SES are special subsets ofSE(3) which, to the best of our knowledge, have not
been sufficiently studied by robotics researchers. It is of natural interest to find their
kinematic generators, i.e., mechanisms whose task space matches the given SES.
Hence the name single exponential motion generator (SEMG) follows. The 2-DoF
orientational PKM with zero torsion angles in [3] and the omni-wrist [9] are example
SEMG of eΩ2R. Both of them employ CV couplings in their kinematic structure.
Here we use the method of symmetric products to derive the sufficient conditions
for a serial chain being a SEMG.

Now consider a serial chain with a generic forward kinematicmap (2). According
to Proposition 2, this chain generates some SES of dimensionk if it has the form of
multi-layer symmetric products and moreover its Jacobian is non-singular and has
rankk. The twist coordinateξi describes the spatial location of the joint axisi at a
given configuration. It is given by a rigid displacement (a cascading of rigid motions
generated by all previous joints) of the corresponding initial twist ζi .
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ξ1 = Adg0ζ1

ξ2 = Adg0g1ζ2
... =

...
ξk = Adg0g1···gk−1ζk

wheregi = eζ̂iαi , αi ∈R, i = 1, · · · ,k, andAdg denotes the adjoint map of an element
g ∈ SE(3). Without loss of generalityg0 could be chosen to be the identitye∈
SE(3). Substituting them into (2) yields

gwt = g0eζ̂1θ1g1 · · ·gk−2eζ̂k−1θk−1gk−1eζ̂kθkg−1
k−1 · · ·g

−1
0 .

Lemma 1. Equation (2) is a symmetric product if and only if

g0 = g−1
k−1g−1

k−2 · · ·g
−1
0 (9)

ζi = ζk+1−i, i = 1, · · · ,k (10)

θi = θk+1−i (11)

gi = gk−i, i = 1, · · · ,k, �. (12)

Employing Eqn.(9)-(12), the twists in (2) are calculated as

ξ1 = Adg0ζ1 (13)

ξ2 = Adg0g1ζ2 (14)

... =
... (15)

ξm = Adg0g1···gm−1ζm (16)

ξm+1 = Adg0g1···gmζm+1 (17)

ξm+2 = Adg−1
0 g−1

1 ···g−1
k−m−2

ζk−m−1 (18)

... =
... (19)

ξk−1 = Adg−1
0 g−1

1
ζ2 (20)

ξk = Adg−1
0

ζ1 (21)

wherem= ⌊k/2⌋ denotes the greatest integer less than or equal tok/2. The set
of consecutive twists{ξ1, · · · ,ξk} forms a special arrangement because there is a
kind of symmetry between pairs of twists,(ξi ,ξk+1−i) (i = 1, · · · ,k). Moreover the
instantaneous velocity space of the chain is calculated asW := {W1,W2, · · ·}, where

W1 = ξ1+ ξk = (Adg0 +Adg−1
0
)ζ1

W2 = ξ2+ ξk−1 = (Adg0g1 +Adg−1
0 g−1

1
)ζ2

... =
...
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The dimension ofW is eitherm (if k is even) orm+1 (if k is odd).ξi andξk+1−i

(i=1,· · · ,m) are symmetric with respect to the hyperplaneW ⊂ se(3), andξm+1 ∈W
in case that m is odd. This result could be considered as a generalization of Hunt’s
theory about CV couplings where the joint axes are required to be symmetric about
a plane inR3, while here the symmetry is with respect to a hyperplane inse(3). In
this paper we call the latter symmetry as mirror symmetry.

ξ ′
2

ξ2ξ1

α1 α0

−α0
−α1

ζ1 ζ2

ζ3(ξ3)η0

ξ ′
4

η1

ξ4

ξ5

W

Fig. 1 Mirror symmetry of aeΩ1T2R subchain:ξ ′
2=Adg1ζ2; ξ ′

4 =Adg−1
1

ζ2; ξ2 =Adg0ξ ′
2 =Adg0g1ζ2;

ξ4 = Adg−1
0

ξ ′
4 = Adg−1

0 g−1
1

ζ2; ξ1 = Adg0ζ1; ξ5 = Adg−1
0

ζ1; ξ3 = ζ3 (g0 = eη̂0α0; g1 = eη̂1α1).

Example 4 (Mirror symmetry of eΩ1T2R generators).According to Lemma 1, a serial-
chain generator ofeΩ1T2R = {e3,e4,e5} may consist of five joints given by:

ξ1 = Adg0ζ1,

ξ2 = Adg0g1ζ2,

ξ3 = ζ3,

ξ4 = Adg−1
0 g−1

1
ζ2,

ξ5 = Adg−1
0

ζ1

g0 = eη̂0α0,g1 = eη̂1α1,ηi ,ζ j ∈ Ω1T2R.

Notice that we could simply let the initial set of twists beζ1 = e4, ζ2 = e5, and
ζ3 = e3, and then applying rigid displacementsg0 andg1 yields a new set of mirror
symmetric twists{ξi}, as shown in Fig. 1.

Finally we have the following theorem for SEMG

Theorem 2.Let eΩ be an m-dimensional SES. A serial chain consisting of k= 2m
or 2m+1 joints is a SEMG of eΩ if there exists a configuration(θ1, · · · ,θk) at which
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the set of screws{ξ1, · · · ,ξk} is mirror symmetric aboutΩ ⊂ se(3) and the space W
spanned by{ξ1, · · · ,ξk} satisfies W= Ω , and moreoverθi = θk+1−i , i = 1, · · · ,m is
kept valid by imposing suitable constraints (usually by forming closed-loops).

4 Conclusion

In this paper we generalize the previous results about CV coupling and zero-torsion
mechanisms and unify them into single exponential motion generators. We develop
the tool of symmetric product and Lie Triple System for analyzing the properties
of single exponential submanifolds, and use them to derive the sufficient conditions
for single exponential motion generators. Examples are worked out to verify the
developed theories.
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