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Determination of Maximal Singularity-Free
Workspace of Parallel Mechanisms Using
Constructive Geometric Approach

Mohammad Hadi Farzaneh Kaloorazi!, Mehdi Tale Masouleh?, Stéphane Caro?
and Behnam Mashhadi Gholamali*

Abstract This paper proposes a novel approach to obtain the maximal singularity-
free regions of planar parallel mechanisms which is based on a constructive ge-
ometric reasoning. The proposed approach consists of two algorithms. First, the
borders of the singularity-free region corresponding to an arbitrary start point of the
moving platform is obtained. Then, the second algorithm aims to find the center
of the maximal singularity-free circle which is obtained using the so-called offset
curve algorithm. As a case study, the procedure is applied to a 3-PRR planar parallel
mechanism and results are given in order to graphically illustrate the effectiveness
of the proposed algorithm. The proposed approach can be directly applied to ob-
tain the maximal singularity-free circle of similar parallel mechanisms, which is not
the case for other approaches proposed in the literature which is limited to a given
parallel mechanism, namely, 3-RPR. Moreover, as the main feature of the proposed
approach, it can be implemented both in'a CAD system or in a computer algebra
system where non-convex and re-entrant curves can be considered.

Key words: Parallel mechanisms, Singularity-free workspace, Geometric approach,
Offset curve algorithm.

1 Introduction

Parallel Mechanisms (PMs) are a type of robotic mechanical systems composed of
one moving platform and one base connected by at least two serial kinematic chains
in parallel [8]. PMs are often erroneously said to be recent developments, have a
pedigree far more ancient than that of serial manipulators, which are usually called
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anthropomorphic [3]. However, the last two decades have witnessed a noticeable rise
in the number of publications regarding the kinematic and dynamic analyses of PMs
to the end of proposing the most promising design. As it will be seen later on, PMs
have their own drawbacks and even a simple one can lead to complicated kinematics
analysis. In general, when a PM tends towards structural generality, its geometry and
kinematic analysis get more complicated. The latter is the case of this paper where
upon applying a simple modification into the kinematic arrangement of a planar 3-
Degree-Of-Freedom (DOF) planar PM, the so-called 3-RPR PM, and turning it to a
3-PRR PM, then the problem of singularity-free workspace becomes a cumbersome
task and would be elusive to classical approaches, proposed for the former 3-RPR
PM [6, 7, 10]. Here and throughout this paper, P stands for an actuated prismatic
joint and R stands for a passive revolute joint.

Designing a PM with a singularity-free workspace is a vital condition for fur-
ther analysis, such as path planning and control problem. In the literature, most of
the study propounded on this topic, i.e., singularity-free workspace, are based on
either primitive numerical approach or some complicated mathematical approaches
where both entail some limits. In [2], Bonev et al. conducted an exhaustive study on
the singularity locus of planar 3-DOF PMs by resorting to screw theory. In [10], a
method based on geometric parameters of the mechanism under study is represented
for which a singularity-free circle in the workspace of a 3-RPR PM is obtained.
In [7], Li et al. redefined the problem as an optimization problem accompanied
with a constraint and resorted to Lagrangian multipliers and obtained the maximal
singularity-free circle of a 3-RPR PM for a prescribed center point. In [6], Jiang
and Gosselin proposed some numerical recipes in order to find the singularity-free
workspace of planar 3-DOF PMs.

This paper aims at obtaining the Maximal Singularity-Free Circle (MSFC) of
3-DOF planar PMs for a given orientation of the mobile platform. Obtaining the
MSFC has eminent effect on reliability and endurance of the workspace of the robot.
The circle is chosen because it has the most regular shape and comes in handy in
practice. To the best knowledge of authors, in the literature, results of the MSFC
were obtained only for a prescribed center point and this assumption bounds the
radius of the circle and results into a local optimum solution. In this study, the center
point of the MSFC is not prescribed from the outset and subject to be found using
the geometrical reasoning proposed in this paper. It should be noted that the MSFC
can be readily computed once the center is obtained. The proposed approach for
obtaining the center point of the MSFC is based on a novel constructive geometric
procedure which is the unique aspect of this work and distinct it with the others
reported in the literature [7, 10].

In this paper, a novel geometric algorithm is proposed, called Alg. I, in order
to obtain the singularity-free region of PMs which could be applied to non-convex
singularity locus. Moreover, offset curve algorithm, Alg. II, is adapted for the geo-
metric purpose of this work. Offset curve algorithm [1, 4] is a geometric constructive
tool which has diverse engineering applications and has consequently motivated ex-
tensive researches concerning various offset techniques. It plays an important role
in numerical controls and CAD/CAM applications [4]. To the best knowledge of
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the authors, the problem of MSFC has never been investigated upon a geometric
standpoint. The proposed algorithm, which is inspired from geometric properties
associated to the MSFC, could be implemented either in a computer algebra system
or using a CAD system. Almost all the CAD systems have the possibility to make an
offset of complex curves. in this paper, due to the simplicity, the details are skipped.
Thus, more emphasis is placed on the numerical approach proposed in this paper to
make such an offset to a given curve, specifically the singularity-locus curve.

Through this paper, in order to illustrate the proposed approach, as a case study,
the procedure of obtaining the MSFC is applied to a 3-PRR planar PM. However, it
can be extended to all planar 3-DOF PMs presented in [2]. To the best knowledge
of authors, 3-RPR and 6-UPS (SPS) PMs have been widely treated in the literature
since they lead respectively to quadratic and cubic polynomial expressions for their
singularity locus which simplifies considerably the mathematical challenge. A mi-
nor modification in the kinematic arrangement, for instance having a 3-PRR PM,
leads to the complexity of the procedure for which methods reported in [7] are no
more applicable and fail to provide satisfactory results. One of the problems in such
an investigation is the presence of the square roots in the singularity loci expres-
sions. The proposed algorithm is split into two sub-algorithms: (1) a first algorithm
to obtain the subregion of interest for the MSFC, called Alg. I, and (2) a second
one for obtaining the center point of the MSFC for the foregoing subregion, called
Alg. IL.

The remainder of this paper is organized as follows. First, the kinematic proper-
ties of the PM under study, i.e., the 3-PRR PM, is broadly reviewed. Then, Alg. I
toward obtaining the singularity-free region is fully described, by having in mind
that, as a case study, it will be applied to the 3-PRR PM. Finally, the offset curve
algorithm is introduced to the sake of proposing Alg. II, which is applied into the
singularity region obtained from Alg. L.

2 Kinematic Review of 3-PRR Planar Parallel Mechanism

A 3-PRR planar PM consists of three kinematically identical limbs actuated by a
prismatic joint fixed at the base and followed by two passive R ]01nts as depicted in
Fig. 1(a). As it'can be observed from Fig. 1(a), Oy,;, with i, _] and K as unit vectors,
represents the fixed frame and O,,, stands for the moving frame. The pose (position
and orientation) of the mechanism is defined by (x,y,¢) where p = [x,y]” and ¢
represent respectively the Cartesian position and the orientation of the moving frame
with respect to the fixed frame. Upon resorting to screw theory [2], the Jacobian
matrix of the mechanism can be formulated as follows:
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(a) 3-PRR planar PM [2] (b) Singularity locus of 3-PRR planar PM for
¢ = /36 and subregions .

Fig. 1 Representation of (a) the schematic and (b) the singularity locus of a 3-PRR planar PM.

in which l;, i = 1,2, 3, is the unit vector along the line connecting point B; to point C;
and r; is the vector connecting the origin of the moving platform to point C;. Singu-
lar configurations of the mechanism occurs when the Jacobian matrix becomes rank
deficient [5], i.e., the determinant of the foregoing matrix vanishes, det(J) = 0. The
latter leads to have a polynomial of degree 20 (20 in y and 16 in x) for a constant-
orientation of the moving platform [2]. It is worth to be noticed that the latter poly-
nomial corresponds to all the eight working modes of the mechanism and, as re-
ported in [2], it is not possible to find a polynomial expression for a single working
mode among the eight one. It should be noted that obtaining such a polynomial is
an extremely delicate task and is beyond the scope of this paper. Skipping the latter
mathematical manipulations, Fig. 1(b) depicts the singularity locus of the 3-PRR
planar PM for ¢ = 7 /36.

3 Algorithm to Obtain the Subregion of the Singularity-free
Workspace, Alg. I

As it can be inferred directly from Fig. 1(b), the singularity locus is such that splits
the workspace of the mechanism into different regions which, in this paper, are re-
ferred to as subregion and called 77, i = 1,--- ,n. It should be noted that some
subregions are not mentioned in Fig. 1(b) to not overload the figure. This section
is devoted to present a new method to the end of obtaining the boundaries of the
singularity-free subregion, #. It is worth noting that the proposed method could be
applied to any kind of complex curve and it does not depend on the convexity of
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Algorithm 1 The pseudo-code of the algorithm to obtain the subregion of the
singularity-free workspace, Alg. L.

: Input: det(J) =0, Py as the starting point of the moving platform and € as the desired accuracy
: Output: The corresponding singularity-free subregion, called J#, consists of P,,i=1,--- ,n
i+ 1;

P, = fminsearch(|det(J)|,Py) % use “Nelder-Mead” to find a point on the singularity locus
: while |P,— P_i| < e do

ii+1

K; =circle(P;,€) % create a clockwise circle with P; and € as center and radius

S =solve(det(J),K;) % save the intersection points of the circle and the singularity locus
P, = order(S,clockwise)(1) % save the first item of S with respect to trigonometry order
: end while

SR NE LD
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the subregions. Moreover, the main challenge in finding a subregion is the intersec-
tion points among different branches of the singularity curve, which are known as
bifurcation points, called B as indicated in Fig. 2.

Algorithm 1 represents the concept of Alg. I which the reasoning is fully de-
scribed in what follows. The first step to obtain the boundaries of a subregion is to
specify which subregion among 7%, i = 1,--- ,n, is of concern. This can be done by
specifying an arbitrary point, Py, lying inside the desired subregion. In practice, this
point is the position of the moving platform in the reference configuration of the
mechanism. Therefore, the workspace of the moving platform should be bounded
within the subregion of the start point, i.e., F.

The algorithm starts by finding a point on the singularity locus which lies on the
boundary of the desired subregion, called point P;. The latter can be done readily
by using an unconstrained optimization approach for |det(J)| = 0, as the objective
function, i.e., using direct pattern search, namely Nelder-Mead (simplex) method
with € as simplex parameter [9]. From P;, the algorithm starts to search through
the boundary of the subregion other points constituting the subregion. To do so, a
line is passed from Py to P; and creates a trigonometry circle, Kj, with P; and €
as center point and radius, respectively. The value of € stands for the computation
accuracy. The trigonometric circle covers angle between ¢ = [0,27) and can be
either clockwise or counter-clockwise. The line corresponds to ¢ = 0. By changing
the angle 7 from 0 to 27, the first intersection point of K; and singularity locus will be
saved and called P, as depicted in Fig. 2. In practice, this can be done by considering
the discrete circle. By the same token, a trigonometric circle, called K5, will be
created with P, and € as center point and radius, respectively, with the same direction
as the previous circle. The same procedure pursues for new points P, i =1,...n, and
at each step the first intersection point will be added to a list of points, called %p.
The stopping criterion of the algorithm is that, the last obtained point, P,, be close
enough to the first member of %y, i.e., Pj. In other words, ||B, — P|| < €. Finally,
%) is a closed polygon which represents the singularity-free region corresponding
to the reference configuration of the mechanism.

The main feature of this algorithm is its ability to deal properly with the multi-
sectional areas caused by intersection among the singularity curve. This type of
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Fig. 2 Result of applying the proposed algorithm to the end of obtaining the singularity-free region
of 4. Py is the starting point and the the red polygon represents the singularity-free of 4.

areas are represented in Fig. 2, and, as it can be observed, due to the reasoning of
the algorithm, these multi-sectional areas have no significant effect on the proce-
dure and will be automatically circumvented. More precisely, Alg. Lis able to detect
the correct region when approaching a bifurcation point, B. In Fig. 2, Alg. I is ap-
plied in order to find % as the singularity-free region. Point Py is the position of the
moving platform in its reference configuration. By resorting to Nelder-Mead (sim-
plex) method, € = 0.5, a point close to the singularity locus is obtained, P;. Pursuing
Alg. I, more points P;, i = 1,--- , n, are obtained. It took 3 sec to compute %, with a
2 GHz processor. In fact, 6, will be used in the next section as the singularity-free
region in order to obtain the MSFC. As it will be more apparent in the upcoming
section, errors due to the iterative approximation of singularity-free region %y tend
to zero upon applying offset curve algorithm.

4 Obtaining the MSFC Using Offset Curve Algorithm, Alg. IT

The whole concept of the offset curve algorithm, is based on two geometric proper-
ties of MSFC for which it should be (a) tangent to the intersection points between
the MSFC and the boundaries of the polygon %j and (b) its center point should be
equidistant to all the intersection points. For a closed-planar polygon & (t), its offset
polygons can be written mathematically as follows [4]:

Civ1(t) «—Ci(t)£dn(r), j=1,2,...m (2)

where d is the offset distance and n(¢) is the normal vector at point ¢ on the polygon
€;(t). In the problem addressed in this paper, “—" is considered as &, because it is
desired to decrease the area of %; to a point. Having in mind the two latter properties
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Fig. 3 Using Alg. I, singularity-free region .74 is obtained, called 6. Then, by applying four
times Alg. IT (offset concept) into %, the area of the last polygon, %4, is less than €. Therefore, it
can be estimated by a point, Cy as the center of MSFC with radius as r = 4 d.

of the MSFC, the algorithm is organized as follows. The first step consists in obtain-
ing the tangent of each point 7 on the perimeter of the polygon . Then each point
on the perimeter is moved forward by a given value, d; in the direction of the line
perpendicular to its tangent which yields a new polygon, %) . By the same token, one
can obtain %,, 63, ... and %,,. The latter procedure should be persuaded in such a
way that for a given m, the area of 6, reduces to approximately a point for which
the algorithm stops. The latter point, Cy, represents the center of the MSFC. The
radius of the circle is simply computed-as r = m d, where m stands for the number
of applied offset and can be chosen arbitrarily.

It should be noted that a special situations may arise, which consists in the cases
for which the curve contains some necks. In such cases, upon pursuing the offset
curve algorithm the curve will be separated and split into different curves and the
algorithm should apply the offset approach for each subregion and obtain the corre-
sponding MSFC [1, 4]. The MSFC is the biggest one for all the subregions.

The offset curve algorithm is available in Matlab by using the command bufferm
and almost all CAD software have the capability of executing such a curve off-
set. Figure 3 represents the result of the MSFC for a 3-PRR PM for a constant-
orientation of the moving platform singularity locus. Using Alg. I, the singularity-
free subregion of the mechanism for a prescribed orientation is obtained, 6. Then
by applying Alg. I, the corresponding MSFC is obtained. In Fig. 3, 6}, i=1,--- ,4,
are new offset polygons in which, each of them is generated by offsetting its pre-
ceding one by d as the normal distance. The latter is continued until converging to a
point, Cy, being the center of the MSFC. Finally, by having the center of MSFC the
corresponding radius can be readily obtained.
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5 Conclusion

This paper proposed a new geometric constructive approach to the end of obtain-
ing the singularity-free region and the maximal singularity-free circle of 3-DOF
planar parallel mechanisms. The procedure consisted of two algorithms, which are
mainly based on geometrical reasoning of the problem. First, using a new method
the boundaries of the singularity-free region corresponding to the starting point of
the moving platform was obtained. Then using the so-called offset curve algorithm,
the center of the maximal singularity-free circle in the corresponding region was
computed. Special conditions were taken into account and proved the robustness of
the algorithm. As a case study, the 3-PRR planar parallel mechanism was consid-
ered. Ongoing works consist in extending the algorithm to higher DOF PMs and
taking into account the workspace boundaries as additional constraints to the prob-
lem, which is a definite asset in practice.
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