
Robust Dynamic Control of an Arm of a
Humanoid using Super Twisting Algorithm and
Conformal Geometric Algebra
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Abstract The pose tracking problem for the 5 DOF (degrees of freedom) arm of
a humanoid robot is studied. The kinematic and dynamic models of the manipula-
tor are obtained using the conformal geometric algebra framework. Then, using the
obtained models, the well known super-twisting algorithm, is used to design a con-
troller in terms of the conformal geometric algebra for the pose tracking problem.
Simulation shows the performance of the proposed controller with the conformal
models for the tracking an object.
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1 Introduction

The geometrical relationships between the kinematical chains of a humanoid and an
object of interest in the environment, determine the reference for their position and
orientation. To follow a target on the task space, a controller must be designed in or-
der to assure a proper torque values on each joint of the manipulator. First, models of
the kinematics and dynamics of the robot must be obtained, for this end, the confor-
mal geometric algebra (CGA) framework allows the representation of rigid transfor-
mations (rotations, translations, screw motions) and geometric entities (points, lines,
spheres, etc), these entities will serve to model the structure of the robot, for exam-
ple, lines can be considered as links of the manipulator. Moreover, the composition
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of several rigid transformations acting over a geometric entity can be computed as
a sequence of geometric products of consecutive motors (the conformal entity that
represents a 3D rigid transformation) [1, 2]. In this work, the conformal geome-
tric algebra (CGA) framework is used to obtain the direct, differential kinematical
and forward dynamic models of the arm of a humanoid. The rest of the work is
organized as follows. Section II presents an introduction to Conformal Geometric
Algebra framework, introducing some geometric primitives and rigid transforma-
tions in CGA used in this work. Sections III presents the kinematic and dynamic
modeling of serial manipulator. In Section IV and V present the control strategy and
the simulation results of the proposed method. Finally, some conclusions are given
in Section VI.

2 Geometric Algebra

We will use Gn to denote the geometric algebra of n-dimensions, which is a graded-
linear space. As well as vector-addition and scalar multiplication, we have a non
commutative product which is associative and distributive over addition. This is
the geometric or Clifford product. The inner product of two vectors is the standard
scalar or dot product, which produces a scalar. The outer or wedge product of two
vectors is a new quantity which we call a bivector.

In this paper we will specify the geometric algebra Gn by Gp,q,r, where p, q and
r stand for the number of basis vectors which square to 1, -1 and 0 respectively and
fulfill n = p+q+ r. The entire basis of Gn is defined as the ordered set:

{1},{ei},{ei∧ e j},{ei∧ e j ∧ ek}, . . . ,{e1∧ e2∧ . . .∧ en} (1)

Where ei denote the basis vector i, and has the following properties:

eie j =


1 f or i = j ∈ 1, · · · , p
−1 f or i = j ∈ p+1, · · · , p+q

0 f or i = j ∈ p+q+1, · · · , p+q+ r.
ei∧ e j f or i 6= j

The Conformal Geometric Algebra, G4,1 = G4,1,0, can be used to treat conformal
geometry in a very elegant way, representing the Euclidean vector space R3 in R4,1,
for a more complete treatment, the reader is referred to the texts by [1, 2]. This space
has an orthonormal vector basis given by {ei} and ei j = ei∧ e j are bivectorial bases.
The unit Euclidean pseudo-scalar Ie := e1∧e2∧e3, a pseudo-scalar I = IeE, and the
bivector E := e4∧e5 = e4e5 are used for computing Euclidean and conformal duals
of multivectors. A null can be defined as

e∞ = e4 + e5, e0 =
1
2
(e4− e5) (2)

where e∞ is the point at infinity and e0 is the origin point. These two null vector
satisfies
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e2
∞ = e2

0 = 0, e∞ · e0 = 1

The point is written as
xc = xe +

1
2

x2
ee∞ + e0

Given two conformal points xc and yc, it can be defined xc− yc = (yc∧ xc) · e∞

and, consequently, the following equality is fulfilled as well:

(xc∧ yc + yc∧ zc) · e∞ = (xc∧ zc) · e∞ (3)

The point will be use to define the position of each joint and the center of mass
of each link on a manipulator.

The Lines will be used to define the rotation axes and orientation of the mani-
pulator, and can be defined in CGA as a circle passing through the point at infinity.
The OPNS (Outer Product Null Space) form of a line is represented as

L∗ = xc1 ∧ xc2 ∧ e∞ (4)

The standard IPNS (Inner Product Null Space) form of the line can be expressed as

L = nIe− e∞mIe (5)

where n and m stand for the line orientation and moment respectively. Given two
lines La and Lb we can define a third error line Le as

Lε = La−Lb (6)

Rigid transformations can be expressed in conformal geometric algebra by car-
rying out successive plane reflections.

The translation to a vector a ∈ R3, of conformal geometric entities can be done
by carrying out two reflections in parallel planes π1 and π2. That is TaQT̃a, where

Ta = (n+de∞)n = 1+
1
2

ae∞ = e
a
2 e∞ (7)

The rotation is the product of two reflections at nonparallel planes which pass
through the origin. That is Rθ QR̃θ , where

Rθ = cos(
θ

2
)− sin(

θ

2
)l = e−

θ
2 l (8)

with l = n2∧n1, and θ twice the angle between the planes π2 and π1.
The screw motion called motor related to an arbitrary axis L is M = T RT̃ and it

is applied in the same way than a rotor, Mθ QM̃θ , where

Mθ = T RT̃ = cos(
θ

2
)− sin(

θ

2
)L = e−

θ
2 L (9)
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3 Kinematic and Dynamic Modeling Of Manipulators

The direct kinematics of a manipulator consists in calculating the position and orien-
tation of the end-effector of a serial robot using the values of the joint variables. If
the joint variable is a translation, Mi = Ti = exp−dne∞ for a prismatic joint and a
rotation Mi = Ri = exp

−θLr
2 for a revolutive joint. The direct kinematics for a serial

robot is a successive multiplication of motors given by

Q′ = M(q)1 . . .M(q)nQM̃(q)n . . .M̃(q)1 =

(
n

∏
i=1

M(q)iQ
n

∏
i=1

M̃(q)i=n−i+1

)
(10)

for a given angular or translation position vector q = [q1 . . . qn]
T .

The differential kinematics of the system results from the differentiation of (10)
for points and lines, and is given by

ẋ′p = Jxq̇, L̇′p = JLq̇ (11)

with q̇ = [q̇1 . . . q̇n], and the Jacobian matrices defined as Jx =
[
x′p ·L′1 . . . x′p ·L′n

]
,

JL = [α1 . . . αn], where

L′j =

(
j−1

∏
i=1

Mi

)
L j

(
j−1

∏
i=1

M̃ j−i

)
, α j =

1
2
(
L′pL′j−L′jL

′
p
)

(12)

and Li is the axis for the ith joint in the initial position. Please refer to [3] for a more
detailed explanation about the differentiation process.

On the other hand, we can write the dynamic equations of the system using the
Euler-Lagrange equations [11] as

M(q)q̈+C(q, q̇)q̇+g(q) = τ (13)

It is possible rewrite this equation in the geometric algebra framework [12], defi-
ning the matrix M(q) =Mv+MI , where Mv and MI are defined as follow. The matrix
MI can be written as the product of two matrix δ and I if we define them as

MI = δ I =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1




I1 0 · · · 0
I2 I2 · · · 0
...

...
. . .

...
In In · · · In

 . (14)

where In are the inertial value of each link. The matrix Mv also can be expressed as
the product of two matrices Mv =V T mV , where the matrices V and m are

m :=


m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...
0 0 · · · mn

 , V :=


x′cm1 ·L′1 0 · · · 0
x′cm2 ·L′1 x′cm2 ·L′2 · · · 0

...
...

. . .
...

x′cmn ·L′1 x′cmn ·L′2 · · · x′cmn ·L′n

 . (15)
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where the values mi are the mass of each link and x′cmi and L′i are the center of mass
and the rotation axes of each link obtained by the direct kinematic defined in (10)
and (12) respectively. Based in the properties of the matrices M and C, it can be
written the matrix C without derivatives as C = V T mV̇ , where the matrix V̇ can be
obtained following the next mathematical procedure. Defining V = XL yields

V =


x′cm1 0 · · · 0

0 x′cm2 · · · 0
...

...
. . .

...
0 0 · · · x′cmn




L′1 0 · · · 0
L′1 L′2 · · · 0
...

...
. . .

...
L′1 L′2 · · · L′n

 , (16)

then V̇ = ẊL+XL̇. With Ẋ = diag[ẋ′cm1, · · · , ẋ′cmn] an diagonal matrix, where the
ẋ′cmi is computed using the differential kinematic (11).

On the other hand

L̇′ =


L̇′1 0 · · · 0
L̇′1 L̇′2 · · · 0
...

...
. . .

...
L̇′1 L̇′2 · · · L̇′n

 . (17)

where L̇′i is computed using (12) and can be expressed in a matrix form as:


L̇′1
L̇′2
...

L̇′n

=
1
2




L′1L′1 0 · · · 0
L′2L′1 L′2L′2 · · · 0

...
...

. . .
...

L′nL′1 L′nL′2 · · · L′nL′n

−


L′1L′1 0 · · · 0
L′1L′2 L′2L′2 · · · 0

...
...

. . .
...

L′1L′n L′2L′n · · · L′nL′n


 q̇. (18)

Finally the vector g is expressed as the product of the three matrices as G =V T ma,
where V have been defined and the vector F = ma is a force component, where
m = diag[m1,m2, · · · ,mn] is a n× n matrix of masses and a = [ge2,ge2, · · · ]T is a
n×1 vector.

4 Dynamic Control

Now using (11) and (13) we will define the output tracking problem for the position
x′p1 and the orientation L′p1 of the manipulator of the humanoid robot. A state-space
model can be obtained using the next state variables: x1 = Pose o f the manipulator,
x2 = q and x3 = q̇. Using the state variables, (11) and (13) the state-space model for
the pose of the manipulator can be defined as:

ẋ1 = Jx3 (19)

ẋ2 = x3

ẋ3 = −M−1Cx3−M−1G+M−1
τ
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where J is the Jacobian matrix, −M−1Cx3−M−1G will be expressed by f (x2,x3)
and y = x1 is the output of the system.

Now, we define a reference signal xre f 1 (t) for the arm and we will define an error
signal. Omitting the parenthesis of the reference, the tracking error is given by ε1 =
x1− xre f 1. Assuming that we know the derivative ẋre f 1 and the second derivative
ẍre f 1, the derivative of the error gives

ε̇1 = Jx3− ẋre f 1 (20)

From (20) we will define a virtual control variable, which ensure that the variable
ε1 will tends to zero. This new variable is obtained as in block control like

xre f 3 = J−1 (−k1ε1 + ẋre f 1
)

(21)

Now we will define an error variable for the second block as ε2 = x3− xre f 3.
Immediately, the error signal ε2 is differentiated and gives

ε̇2 = f (x2,x3)+M−1
τ− ẋre f 3 (22)

the signal ẋre f 3 its divided in two terms, one known part (δJ)

δJ = J−1(−k1(Jx3− ẋre f 1)+ ẍre f 1) (23)

and an unknown part ∆J . On this way the derivative of εs can be rewritten as

ε̇2 = f (x2,x3)+M−1
τ−δJ−∆J (24)

Now using (24), we are able to design a control law for τ , to tackle the pose
tracking problem. For this end we will use a Super-Twisting Algorithm applied to
the robotic manipulator. We will design our control law τ as

τ = M(u0 +u1) (25)

where the term u0 is used to reject the nominal part of the equation (24) and the
known signals, and is defined as u0 = − f (x2,x3)+ δJ , this term ensure the sliding
mode occurrence from initial instance [7]. Now we use the sliding surface s = ε2.
The derivative of s using u and the control term u0 yields ṡ = u1−∆J .

To induce an sliding mode in ṡ we design the second part u1 of the control law
using the super-twisting [9, 10] algorithm as

u1 = −σNsign(s)+µ (26)

µ̇ = Σsign(s)

where N = |s|ρ and σ , ρ , Σ are design parameters. The stability proof and the
system convergence, is demonstrated in [9], for more detail please refer to the cited
reference.
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5 Simulation Results

The initial values of the rotation axes, the values of xi and the center of mass xcmi,
for i = 1 · · ·5, in centimeters, used in the simulation are

L1 = e23 + e∞ (x1 · e23) , x1 = 25e2, xcm1 =−8.91e1 +24.92e2 (27)

L2 = e31 + e∞ (x2 · e31) , x2 =−15.3e1 +25e2, xcm2 =−15.23e1 +25e2 +0.1e3

L3 = e23 + e∞ (x3 · e23) , x3 =−15.3e1 +25e2, xcm3 =−21.8e1 +25.1e2

L4 = e31 + e∞ (x4 · e31) , x4 =−30.5e1 +25e2, xcm4 =−31.08e1 +25.23e2 +0.79e3

L5 = e32 + e∞ (x5 · e32) , x5 =−30.5e1 +25e2, xcm5 =−41.89e1 +25.22e2

The euclidean component of the references signals are given by Lre f = [0,1,−1]T

and xre f = [7cos(2t) ,24,14+5sin(2t)]T , where xre f and Lre f are the references for
the position and orientation, respectively. The mass of the links was m1 = 0.45kg,
m2 = 0.05kg, m3 = 0.34kg, m4 = 0.1kg, m5 = 0.11kg. The values of the controller
was k1 = [7, 7, 5, 21, 22, 24]T , σ = 80, ρ = 0.5 and Σ = 6.

The figure (1 a,b) shows the tracking response of the arm, the figure (1 c) depicts
the error signals for the pose of the arm. Finally the figure (2) shows a sequence of
the humanoid torso using the angular values of the joints obtained with the proposed
method in a virtual model developed in CLUCalc [6] and Matlab [5].

Fig. 1 (a) Position of the end-effector. (b) Orientation of the end-effector. (c) Error signal.

6 Conclusions

The conformal geometric algebra was used to define, in a simple and compact ma-
nner, the kinematic and dynamic models of the arm of a humanoid. Furthermore,
a super-twisting controller was designed in this framework which allows to define
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Fig. 2 Image sequence of the simulation results.

error variables between complex geometric entities. The proposed control scheme is
robust against external disturbances, parameter variations and model uncertainties.
Moreover, using a super twisting controller results in chattering-free control signals
and finite time convergence of the closed loop system. This work pursues the inclu-
sion of geometric restrictions expressed in CGA into the model of robotic systems,
and in the controller design procedure.
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