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Abstract This paper explores the maximal volume inscribed ellipsoid in the singu-
larity free constant-orientation workspace of two classes of 6-UPS parallel mech-
anisms, namely, quadratic and quasi-quadratic Gough-Stewart platforms. It is of
paramount importance to obtain the optimum singularity-free ellipsoid by taking
into account the stroke of actuators. Convex optimization is applied as the funda-
mental optimization tool of this paper. For this purpose, a matrix modeling for the
kinematic properties of Gough-Stewart platform is proposed. The main contribution
of this paper consists in improving an existing method in a such a way that it leads to
a global optimum rather than a suboptimal solution. The proposed algorithm could
be regarded as one of the most reliable, in terms of obtaining the global extremum,
and propitious approaches, in terms of computational time in comparison with other
approaches proposed in the literature for obtaining the singularity-free workspace
which make it suitable for real-time applications.

Key words: Parallel mechanism, Gough-Stewart platform, Singularity-free workspace,
Convex optimization.

1 Introduction

Despite many controversial deterrents, parallel mechanisms (PMs) [1] are now
widely used in different industrial contexts, such as parallel kinematic machines
and pick-and-place applications. The workspace and singularities of PMs have been
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extensively studied in precious literature, due to their importance in the kinetostatic
performance of the mechanism [2] , [3]. To the best knowledge of the authors, few of
these studies focused on analyzing the singularity-free workspace of Gough-Stewart
platform, which is a definite asset in practice for path planning and control [4]-[6].

This paper aims at obtaining the singularity-free ellipsoid of a class of 6-DOF
PMs, known as Gough-Stewart platforms, for which the singularity loci expression,
for a prescribed orientation, is a second degree algebraic polynomial. These mech-
anisms are referred to as quadratic Gough-Stewart PMs. By the same token, the
quasi-quadratic Gough-Stewart PM is defined as a mechanism for which the singu-
larity loci expression, for a prescribed orientation, is of degree two upon fixing one
translational DOF.

Convex optimization, the framework of this paper, can be regarded as a robust
and reliable approach which is becoming the state-of-the-art in different disciplines
due to its remarkable performance in terms of (1) computational time, (2) guarantee-
ing the optimality of the obtained solution and (3) providing analytical formulation
of the problem.

The remainder of the paper is organized as follows. First the mechanism un-
der study in this paper, the 6-UPS PM, is broadly reviewed. We then touch briefly
upon some preliminary definitions about convex optimization. Two classes of 6-UPS
PMs are introduced, namely, quadratic and quasi-quadratic PMs. For each case, a
generalized algorithm is proposed in which the optimal ellipsoid is found within
the singularity-free workspace. As case studies, the singularity-free workspaces of
two given architectures of 6-UPS PMs are obtained. Finally, the paper concludes by
providing some remarks and describing related ongoing work.

2 Architecture Review and Kinematic Modeling

As depicted in Fig. 1, a Gough-Stewart platform is composed of six identical limbs
of the UPS type, which connect the base to the moving platform. Here and through-
out this paper, R, P and S stand respectively for a revolute, a prismatic and a spheri-
cal joint while the underlined joint is the actuated. The platform generates 6-DOFs
by adjusting the lengths ρi, i = 1, . . . ,6 of its prismatic joints. The pose (position
and orientation) of the mobile platform is described by the two coordinate systems
shown in Fig. 1(a), namely, Oxyz and Ox′y′z′ for the fixed and the mobile platforms,
respectively. Point Ai and Pi, i = 1, . . . ,6, stand respectively for the coordinate of the
U and S joints with respect to the fixed frame, Oxyz.

The position vector of the operation point of the mobile platform with respect to
the fixed frame is represented by p = [x,y,z]T . This operation point is chosen to be
point P1. The position vectors of point Pi in the fixed and mobile frames are denoted
by pi and p′i, respectively. The position vector of point Ai attached to the base is ai
with respect to the fixed frame. The rotation of the mobile platform is represented by
the proper orthogonal matrix Q obtained from [φ ,θ ,ψ], i.e., Roll-Pitch-Yaw angles
respectively.
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Fig. 1 6-DOF Gough-Stewart platform.

2.1 Workspace Analysis

In this paper, the constant-orientation workspace is considered and the procedure to
obtain the workspace of the Gough-Stewart platform is according to that proposed
in [2]. The constant-orientation workspace is the set of possible Cartesian positions
of the end-effector operation point for a prescribed orientation [6]. The kinematic
equations corresponding to the ith limb can be expressed as:

ρ
2
i = (pi−ai)

T (pi−ai) (1)

where pi = p+Qp′i is the position vector of each point Pi in the fixed frame. The
stroke of the actuator is represent by the interval [ρmin,ρmax]. Substituting ρmin
and ρmax in Eq. (1) leads to the vertex spaces of the corresponding leg, i.e., the
workspace of a limb for a given orientation, with respect to the fixed frame [2]. By
assuming

ci = ai−Qp′i (2)

as the coordinates of the center point of each sphere given in Eq. (1), one can rep-
resent the workspace, or more precisely the spheres, in a matrix formulation as fol-
lows:

xTAix+2bT
i x+ ci = 0, for i = 1, ...,12 (3)

Ai = I3×3, bi =−ci, ci = cT
i ci−ρ

2
i

where I3×3 stands for the 3×3 identity matrix.

2.2 Singularity Analysis

Singularity usually refers to configurations in which the mechanism fails to preserve
its innate rigidity and consequently the mobile platform gains or loses some DOFs.

Auth
or'

s v
ers

ion



4 Amirhossein Karimi, Mehdi Tale Masouleh and Philippe Cardou

The first-order kinematic equation of a general PM can be expressed as:

Bθ̇θθ = Ax (4)

where x and θ̇θθ are the infinitesimal motion of the output and the input vector, re-
spectively. Matrices A and B denote the so-called Jacobian matrices, the regularity
of which is related to the singularity configurations of the mechanism. From the
classification proposed in [3], each singularity configuration falls into one of three
types. In this paper, we consider only Type II, which is known as the direct kine-
matic singularities, but which we refer to as singularity for the sake of brevity. Thus,
the mechanism undergoes a singularity when A becomes rank deficient, i.e., when
det(A) = 0.

The study carried out in [5] reveals that the quadratic Gough-Stewart platform
corresponds to a design with similar base and platform. In this case, the moving
platform and the base differ only by a scale factor while a quasi-quadratic Gough-
Stewart platform is the one with planar base. In this architecture, all points Ai lie on
a plane and the singularity equation in this case is a polynomial of degree three [5].
Furthermore, by inspection, a Gough-Stewart PM with a planar base is quadratic
upon fixing z, the axis perpendicular to the fixed base. Hence we say that it is quasi-
quadratic.

3 Review on Convex Optimization and General Mathematical
Framework

A convex optimization problem can be expressed as the minimization of a convex
objective function subject to inequality constraints which are all convex functions.
The main feature of convex programming is that any locally optimal point is also
globally optimal [7], [8]. In what follows, a preamble class of convex optimization
problems is briefly introduced, which corresponds to the problem at hand in this
paper.

3.1 Maximum Volume Ellipsoid Inscribed in the Intersection of
Second Order Surfaces

In this case, the problem consists in obtaining E

E = {x | xTPx+2qTx+ r ≤ 1} (5)

as the maximum volume ellipsoid which satisfies all the constraints Ci defined as

Ci = {x | xT Aix+2bT
i x+ ci < 0}, i = 1, ...,m (6)
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where Ai is a n× n matrix, P ∈ Sn
++ (Sn

++ represents the set of n× n symmetric
positive definite matrices) and q is a n-dimensional vector. Since the algorithm pro-
posed in [9] to solve such a problem leads to a suboptimal solution, we introduce
here an extension to the latter approach. We propose a judicious iterative procedure
in order to converge to the optimal solution. The results obtained in [9] reveal that
this problem can be formulated as the following convex optimization problem:

max 1− tr(SP)−2qTx− r (7)
s.t. λ1, ...,λm ≥ 0,[

P−λiAi q−λibi
(q−λibi)

T r−1−λici

]
� 0, i = 1, ...,m,[

P q
qT r

]
� 0

which is convex in variables P, q, r, and λ1, ...,λm. The objective function in Eq. (7)
is the greatest lower bound on Prob(X ∈ ⋂m

1 Ci), where X is a random variable on
Rn, and prob(·) is the probability function. There is no information about the distri-
bution of X except that the first and second moments x = E(X) and S = E(XXT).
Therefore, Eq. (7) is referred to as a lower bound SDP (SemiDefinite Program-
ming) [9]. The obtained ellipsoid is the locally maximum volume ellipsoid tangent
to the boundaries of Ci at some points, which contains point x. Notice that it should
be regarded as a suboptimal solution since it is generated by an initial guess.

In what follows, an improved approach referred to as improved lower bound
SDP is proposed in order to circumvent the latter problem. The main part of this
algorithm consists in defining the initial information of the probability distribution,
i.e., vector x0 and the matrix S0, the so-called initial guess. The challenge consists
in defining the first guess in order to launch properly the improved approach to find
the optimal ellipsoid, i.e., to find Popt, qopt and ropt. To do so, first, an arbitrary point
satisfying all the constraints of the problem should be defined for x0 and S0. To
ease the selection of the first guess, the second moment matrix can be computed as
follows from the first moment vector:

S0 = x0 xT
0 +wI3×3 (8)

For a small w, upon applying the above equation into Eq. (7), one can compute
the optimal ellipsoid around the mean vector x0, but this is not the final and optimal
solution to the problem. In order to find the optimal ellipsoid, an improved algorithm
should be considered in which for each iteration the center of the expanded ellipsoid
is computed as mean vector xi and the second moment matrix is computed from
Eq. (8) for the new mean vector xi. This means that after the first guess x0, for the
rest of the algorithm, the results obtained for P, q and r are considered as the initial
guess for pursuing the iteration.

This iterative procedure stops and returns Popt, qopt and ropt as optimal solutions
when the distance between the centers of two consecutive expanded ellipsoids is
smaller than a given value, ε , which means that there is not a significant change
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Table 1 Geometric parameters of the PMs under study.
(a) Similar base and platform

i 1 2 3 4 5 6
xai 0 1 2 1 -1 -1
yai 0 0 1 2 2 1
zai 0 0 0 2 1 0
x′pi

0 0.5 1 0.5 -0.5 -0.5
y′pi

0 0 0.5 1 1 0.5
z′pi

0 0 0 1 0.5 0
(ρmin)i 1 1 1 1 1 1
(ρmax)i 4 4 4 4 4 4

(b) MSSM

i 1 2 3 4 5 6

xai 0 0 1
4√3

1
4√3

- 1
4√3

- 1
4√3

yai 0 0 4
√

3 4
√

3 4
√

3 4
√

3
zai 0 0 0 0 0 0

x′pi
− 4√27

5
4√27
5

4√27
5 0 0 − 4√27

5

y′pi
0 0 0 3 4√3

5
3 4√3

5 0
z′pi

0 0 0 0 0 0
(ρmin)i 1 1 1 1 1 1
(ρmax)i 4 4 4 4 4 4

in the center of the obtained ellipsoid by pursuing the procedure and the optimum
ellipsoid is attained:

||xi−xi−1||2 ≤ ε (9)

4 Convex Modeling of Singularity-free Workspace

In this section, the aforementioned improved lower bound SDP algorithm is applied
in order to investigate the singularity-free workspaces of two Gough-Stewart plat-
forms. The optimization problem presented in Eq. (7) can be solved by resorting
to the CVX package, a convex optimization package implemented in MATLAB by
Grant and Boyd (2011) [10].

4.1 Case Study I: Similar Base and Platform

As the first case study, the Gough-Stewart PM with geometric parameters given
in Table 1(a) is considered. Its base and moving platform being similar, thus this
Gough-Stewart PM is quadratic.

The problem can be formulated as follows. The matrix formulation of the 12
spheres, Ci, six inner and six outer spheres, is obtained from Eq. (3). The singularity
equation can be reformulated readily as Eq. (6). The optimization problem given
in Eq. (7) is then solved to obtain Popt, qopt and ropt. Finally, we implement the
improved lower bound SDP method introduced in Section 3, in order to obtain the
maximal singularity-free ellipsoid.

It should be noted that the optimal solution obtained from the improved lower
bound SDP can be changed according to the choice of the initial guess x0. Thus,
selection of different initial guesses in each feasible subregion of the singularity-
free workspace results in the same optimal solution. However, the optimal solution
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Fig. 2 The maximum-volume singularity-free ellipsoid in the workspace of 6-UPS for φ = θ =
ψ = π

4 .

varies based on the selection of x0 within other feasible subregions of singularity-
free workspace. Figure 2 depicts the results obtained for φ = θ = ψ = π

4 . Two
initial guesses are considered, x0 = [2,2,0]T and ω = 0.1, and x0 = [−1,−1,1]T

and ω = 0.1, which lead to two distinct optimal solutions as depicted in Fig. 2.
Figure 2(b) represents the result for z = 0.3 including the iterative procedure, i.e.,
the dashed ellipses, to find the optimal solution, the solid ellipse. For this case,
the computational time obtained by a PC equipped with an Intel(R) Core(TM) i5-
2430M CPU @ 2.40GHz, and 4GB RAM is 0.6 s.

4.2 Case Study II: MSSM

As represented in Fig. 1(b), the Minimal Simplified Symmetric Manipulator (MSSM)
is an architecture for which the base and the moving platform are isosceles triangles.
In this case, a MSSM with an equilateral triangle base of unit area is considered. The
moving platform is also an equilateral triangle with area of 9

25 . Table 1(b) represents
the geometric parameters of this mechanism. Since in this architecture, the base
of the mechanism is coplanar, the singularity equation is of quasi-quadratic type,
i.e., the singularity equation becomes quadratic upon fixing z. Following the same
reasoning explained for the previous case, the maximum area ellipse for each sec-
tion, i.e., z ∈ [0,2] in this case, can be obtained via the improved lower bound SDP
approach. By starting from x0 = [1,0]T and ω = 0.1, after a computational time of
7.1 s, the optimal ellipse found as depicted in Fig. 3 for φ = π

6 ,θ = π

4 , and ψ = 0.
Figure 3(a) represents the general result with ∆z = 0.1 as the increment value for
each cross section while Fig. 3(b) depicts the result for a given cross section, z= 0.5.
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Fig. 3 The maximum-area singularity-free ellipses in the workspace of MSSM for φ = π

6 ,θ =
π

4 ,ψ = 0.

5 Conclusion

This paper investigates the singularity-free workspace of two classes of 6-DOF par-
allel mechanisms referred to as quadratic and quasi-quadratic Gough-Stewart plat-
forms. An extension to an existing approach was presented in order to converge to
the optimal solution from an initial guess. In terms of computational time, the pro-
posed algorithms provides some outstanding results with respect to others reported
in the literature. Ongoing work include obtaining the appropriate design parame-
ters for a prescribed singularity-free ellipsoid, namely, performing the dimensional
synthesis of Gough-Stewart platforms.
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