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Abstract Calibration aims at identifying the model parameters of a robot
through experimental measures. In this paper, necessary mathematical con-
ditions for calibration are developed, considering the desired accuracy, the
sensor inaccuracy of the joint coordinates, and the measurement noise. They
enable to define a physically meaningful stop criterion for the identification
algorithm and a numerical bound for the observability index O3, the mini-
mum singular value of the observability matrix. With this bound, observabil-
ity problems can be safely detected during calibration. Those conditions for
calibration are illustrated through a simple example.
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1 Introduction

Because of manufacturing and assembly errors, kinematic parameters of a
robot are only known with uncertainties. In order to reach the desired ac-
curacy of the robot over its workspace, a better knowledge of the model
parameters is needed: this is the goal of calibration. Calibration can be de-
composed in four important parts: modeling, measurements, identification
and implementation [8, 11].

The required qualities of a robot model for calibration are well-known and
can be found in [4]. However, necessary conditions also exist for the measure-
ment and the identification steps. Indeed, some common assumptions have to
be made: for example that the identification function mostly depends on the
variations of the model parameters. Such hypotheses imply conditions both
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on the measurement device accuracy and on the measurement workspace.
However, to the best of our knowledge, those conditions are not treated in
the literature. Deriving those necessary conditions will lead to the calculus of
the necessary accuracy of the kinematic parameters and the maximal allowed
measurement inaccuracy for calibration. With these values, a numerical scal-
ing of the observability matrix [8] involved in the identification step can be
obtained. This enables to define a numerical bound for the observability in-
dex O3 [10], the minimum singular value of the observability matrix. With
this new bound, observability problems can be detected during calibration.

2 Overview and Conditions of Calibration

Without loss of generality, we will focus only on the kinematic calibration.
Let consider a robot, with either a serial or parallel kinematic structure, with
n′ actuators controlling n degrees of freedom. The exact pose p of the end-
effector is described by the n-vector x∗p, and ρ∗p stands for the n′-vector of the
exact joint coordinates at pose p. The kinematic model of this robot relates
the joint and end-effector coordinates ρ∗p and x∗p through a function f∗ that
depends upon the m irreducible exact kinematic parameters [4] described by
the vector ξ∗:

f∗(x∗p,ρ
∗
p, ξ
∗) = 0 (1)

However, both the joint coordinates and the kinematic parameters are not
known with exactitude because of the accuracy of the actuator sensors, and
manufacturing and assembly errors. Let consider measurement errors δρ∗p and
δξ∗ between the nominal values ρp and ξ and the exact values ρ∗p and ξ∗ such
as ρp = ρ∗p + δρ∗p and ξ = ξ∗+ δξ∗. These errors lead to a position error δx∗p
of the end-effector. The position error can be estimated by differentiating
f∗(xp,ρp, ξ) with respect to all its parameters with the assumption of no
singularity in the robot workspace [6]. Moreover, it is often complicated to
obtain the exact model of a robot f∗. Thus the modeling contains also errors
εm that can be considered in the position error of the end-effector:

δx∗p = Jpρ(xp,ρp, ξ)δρ∗p + Jpξ(xp,ρp, ξ)δξ∗ (+εm) (2)

where Jpρ is the kinematic Jacobian matrix, and Jpξ is the identification Ja-
cobian matrix of pose p [8]. Note that both Jpρ and Jpξ are functions of all
the parameters. For clarity reasons, this dependency will be omitted in the
following equations. From (2) can be derived condition (C1):

(C1) Necessary accuracy of the kinematic parameters: Assuming a
given desired accuracy ∆xf and accuracy of the joint coordinate sensor
∆ρ, then the necessary accuracy δξnec of the kinematic parameters can be
derived from (2) under the assumption ∆xf >> εm:
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∀xp ∈ W, abs(Jpξ)δξ
nec ≤ ∆xf − abs(Jpρ)∆ρ (3)

where abs(•) stands for a matrix whose terms are the absolute values of
the considered matrix, and W refers to the robot workspace. Note that
the assumption ∆xf >> εm means that the modeling errors can be ne-
glected compared to the desired accuracy. This can be done by considering
a model that contains all anticipated sources of error, before decreasing
its complexity in the implementation step [9, 2]. �

Thus, (3) gives an estimation of δξnec in the worst case, which is when
each δρ = ±∆ρ and each δξ = ±δξnec: in this case, abs(Jpρδρ + Jpξδξ) =
abs(Jpρ)∆ρ+ abs(Jpξ)δξ

nec. However, matrices Jpξ and Jpρ are calculated with
the non-exact values ξ: a better estimation of δξnec can be obtained using
interval analysis [7]. Another point is that Jpξ is an n×m matrix, with most
of the time m > n, which yields to an under-determined system of equations.
So, several sets of δξnec satisfying (3) can be chosen.

The second step of calibration is the identification process. From the kine-
matic model, measurements are taken on the robot and the kinematic pa-
rameters are estimated so that an objective function depending on both the
measurements and the model parameters is minimized. Let consider that all
the m kinematic parameters can be identified and that d measurements are
taken for Np different poses of the end-effector. A trivial condition for being
able to perform calibration is:

(C2) Sufficient number of measurements: d.Np > m �

Each d-vector of exact measurements y∗p, with p = 1..Np, is then compared
to an estimation resulting from the kinematic model through the identifica-
tion function gp of pose p, εp being a residual considering the modeling errors:

gp(y∗p,ρ
∗
p, ξ
∗) = εp (4)

Considering the measurement noises δy∗p and δρ∗p, with yp = y∗p+δy∗p, and
the parameter errors δξ∗, differentiating (4) with respect to all its parameters
yields to:

gp(yp,ρp, ξ) = εp + Gp
yδy
∗
p + Gp

ρδρ
∗
p + Gp

ξδξ
∗ (5)

where matrices Gp
y, Gp

ρ and Gp
ξ all depend on the robot pose p. However,

since the exact values of δy∗p and δρ∗p are not known, the identification process
is always performed under the hypothesis that gp mostly depends on the
variation δξ∗ of the kinematic parameters. This hypothesis can be written as
in (6) and yields to (C3).

∀p = 1..Np, abs(Gp
yδy
∗
p + Gp

ρδρ
∗
p) << abs(Gp

ξδξ
∗) (6)

(C3) Necessary condition on measurement inaccuracy: Considering
the maximal inaccuracy ∆ρ of the joint coordinates and the necessary ac-
curacy of the kinematic parameters δξnec, (6) can be rewritten as:
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∀p = 1..Np, abs(Gp
y)∆ymax + abs(Gp

ρ)∆ρ < abs(Gp
ξδξ

nec) (7)

with∆ymax the maximal measurement inaccuracy, which enables to choose
the appropriate measurement device. �

Condition (C3) leads to an estimation of ∆ymax in the worst case. If
the obtained value of ∆ymax is too strong, first another set of δξnec can be
chosen accordingly to (C1). Then, (7) has to be valid for the Np measurement
configurations only. Thus, the inequality of (7) can also be verified through a
proper choice of the observability matrices Gp

ξ . This property is well-known
and has already been studied through observability indexes [3, 10]. From (7),
we can remark that analyzing Gp

y and Gp
ρ can also be of prime interest.

With (C3), we obtain gp(yp,ρp, ξ + δξ) ≈ gp(yp,ρp, ξ) + Gp
ξδξ, with

δξ 6= δξ∗ since δξ considers the measurement noise, sensor inaccuracies
and modeling errors. The objective of identification is to find the best set
of parameter errors δξ that minimizes functions gp for p = 1..Np. Set-
ting h =

∑Np

p=1 gTp gp = gTg as the objective function of identification, with
g = [gT1 . . .g

T
Np

]T , yields to the following normal equations (8) at iteration j:

GT
ξ Gξδξ

j+1 = GT
ξ g(yp,ρp, ξ+

j∑
i=1

δξi) , with Gξ = [G1
ξ
T
. . .GNp

ξ

T
]T (8)

An estimation of the kinematic parameters is given by ξest = ξ+
∑jmax
i=1 δξi,

jmax being the number of the last iteration. Most of the time, the optimization
algorithm is stopped when the residual of h is under a certain threshold. The
measurement errors have to be considered in this threshold. However, in prac-
tice, this threshold is manually adjusted to obtain the algorithm convergence
and has no physical meanings. From the above conditions, the necessary ac-
curacy δξnec was derived. This value considers the desired accuracy and can
be reached by the identification algorithm considering the measurement noise
due to (C3). Thus, the stop criterion of the optimization algorithm can be
set as abs(δξjmax) ≤ δξnec which is physically meaningful.

However, results of identification also depend on the scaling of the iden-
tification function g [5]. Thus, the developed conditions are necessary but
not sufficient because of observability issues. They will however be useful to
define a physical bound for the observability index O3 [10].

3 Observability Issues

In practice, even if the previous conditions of calibration are fulfilled, only
k model parameters among m can be identified, with k ≤ m, because some
model parameter errors δξ cannot be observed during identification. Such
observability problems depend on properties of the observability matrix Gξ.
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Three types of identifiability problems can occur [5]: unidentifiable, weakly
identifiable or identifiable only in linear combination.

Non-Observability: It occurs when a kinematic parameter is not involved
in the identification function g. In this case, its corresponding column of
Gξ is zero. If the rank of GT

ξ Gξ is r, then m − r kinematic parameter
errors are non-observable. This phenomenon appears when measurements
are only partial or when measurement configurations do not involve all the
kinematic parameters, and can be observed with a QR-decomposition. A
parameter whose variation is non-observable is called non-identifiable.

Low-Observability: A model parameter is said to be low-identifiable if
its corresponding column of Gξ is close to zero: an important variation
of its value only has small consequences on the identification function
g, compared to the influence of measurement and modeling errors. The
identification of such a parameter often leads to an important variation of
its initial value and degrades the robustness of calibration [5].

Linked-Observability: The linked-observability occurs when two or more
parameter errors δξ appear in the normal equations only as a linear com-
bination whose variation is less than the measurement noise. Their corre-
sponding columns of Gξ are linearly related and only the linear combina-
tion of those parameters can be observed. The linked-observability often
appears for robot having a small workspace, or when measures are not
generic enough (with constant orientation for example).

Non-observability is very easy to check. In order to tackle low- and linked-
observability problems, observability indexes were proposed [10]. Those in-
dexes are based on properties of the singular values of the observability matrix
Gξ. However, a proper scaling of this matrix is compulsory for a comparison of
its singular values [5]. A proper scaling of Gξ can be obtained due to the above
developed conditions of calibration. Let consider the worst case of observabil-
ity during identification. This occurs when the parameter variation is mini-
mum, that is δξnec, and when the identification function g is highly noisy, that
is δgmin = [δgT1 ...δg

T
Np

]T with δgp = abs(Gp
y)∆ymax + abs(Gp

ρ)∆ρ. Let de-
fine the scaling vectors ∆ξi = diag(δξnec)−1.δξi and ∆g = diag(δgmin)−1.g,
where diag(x) stands for a matrix whose diagonal is the vector x. Thus, in
the worst case, ∆ξi and ∆g become vectors whose terms are approximately
equal to 1. The normal equations (8) can be written as:

Hξ∆ξ
j+1 = ∆g with Hξ = diag(δgmin)−1.Gξ.diag(δξnec) (9)

In this case, if a singular value σL of Hξ is under 1, the measurement noise
considered in ∆g will be amplified, which may lead to a wrong estimation
of ∆ξj+1. So, the condition σL(Hξ) ≥ 1 is sufficient to prevent observability
issues. This condition is related to the observability index O3 [10]. However,
it will be seen in the following example that this condition is sufficient but
not necessary for observability.
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4 Application Example

The 2-bar serial planar mechanism, presented in Fig. 1, consists of two bars of
lengths l1 and l2, actuated by two motors at angles ρ1 and ρ2 from their initial
poses ρ0

1 and ρ0
2, respectively. The objective is to calibrate this serial manip-

ulator considering measurements xC of its end-effector in the measurement
frame (O,x,y). The nominal (initial guess) and real values of the kinematic
parameters ξ = [xA, yA, l1, l2, ρ0

1, ρ
0
2]T are given in Fig. 1.

Fig. 1: The serial planar 2-bar mechanism and its kinematic parameter definition

With vectors of the actuator positions ρp = [ρp1, ρ
p
2]T and end-effector

locations xp = [xpC , y
p
C ]T of pose p ∈ W, the exact kinematic model f∗ can be

written, with αp1 = ρp1 + ρ0
1, αp2 = αp1 + ρp2 + ρ0

2, sα = sin(α), and cα = cos(α):

f∗(xp,ρp, ξ) =
[
xA + l1cαp

1
+ l2cαp

2
− xpC

yA + l1sαp
1

+ l2sαp
2
− ypC

]
, which yields to: (10)

Jpρ =
[
−l1sαp

1
− l2sαp

2
−l2sαp

2

l1cαp
1

+ l2cαp
2

l2cαp
2

]
, Jpξ =

[
1 0 cαp

1
cαp

2
−l1sαp

1
− l2sαp

2
−l2sαp

2

0 1 sαp
1
sαp

2
l1cαp

1
+ l2cαp

2
l2cαp

2

]
Considering the desired accuracy ∆xf = [0.01m, 0.01m]T , the accuracy

of the actuator sensors ∆ρ = [0.01◦, 0.01◦]T , the allowed motor positions ρ1

and ρ2 = ±90◦, and setting that all the distance parameters (respectively
the orientation parameters) must have the same necessary accuracy δxnec

(respectively δθnec), we obtain from (C1): δxnec = 1mm and δθnec = 0.1◦.
These values allow to reach∆xf over the entire robot workspace. The detailed
calculus can be found in the Maple R© or Mathematica R© worksheets of [1].

As for the number of measurements, (C2) gives Np ≥ 6. However, this is
a lower bound and the required number of measurements allowing good cali-
bration results is still an open issue. This number can be minimized through a
proper choice of the measurement configurations [3]. The number of measure-
ments is not limited for simulation. Thus, two cases will be studied: Np = 250
and Np = 20 configurations randomly chosen in the measurement workspace.

Since measurements are directly the output xC of the mechanism, the
identification function gp of pose p can be chosen as the first row of the
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kinematic model f∗ of (10). This enables the matrices Gp
ρ and Gp

ξ to be equal
to the first row of Jpρ and Jpξ respectively, and Gp

y = [−1]. With those matrices,
the last condition of calibration (C3) can be derived. Thus, the accuracy
of the measurement device can be chosen accordingly to the measurement
workspace as shown in Fig. 2. In this figure are plotted the curves for ρ1

and ρ2 ∈ [−π2 ; 0] for which (7) is exactly satisfied considering different values
of the measurement device accuracy δy. Setting a measurement workspace
such as ρ1 and ρ2 ∈ [−75◦; 0], represented as a light-gray square in Fig. 2, a
necessary accuracy δynec of 3mm can be chosen from (C3).

Finally, calibration is performed using a least-square algorithm with nor-
mal equations of (9). Obviously, yA is non-identifiable since it does not appear
in the identification function gp, and is removed from the set of identifiable
parameters. For 4 different cases presented in Fig. 2, Np random poses are
taken in the measurement workspace. Considering the actuator sensor inac-
curacies, the pose xpC is calculated and a uniformly distributed measurement
noise of ±δy is added. Calibration is repeated 10 000 times and results are
presented in Fig. 2 as the maximal obtained inaccuracies ∆xC and ∆yC on
the 100 verification poses, randomly taken in the manipulator workspace W.

Fig. 2: Choice of the necessary measurement accuracy as a function of the measurement

workspace and results of calibration for the 4 cases.

Case 1 is the ideal case: all conditions are fulfilled and the accuracy ∆xf
is reached over W. Case 2 shows that (C3), the maximal measurement inac-
curacy, is a necessary condition to reach ∆xf . Case 3 confirms the necessity
to optimize the configurations of measurement when decreasing their number
Np. Finally, the linked-identifiability issues are addressed in case 4: because of
the small measurement workspace and the measurement noise, xA, l1 and l2
appear in gp only as a linear combination and cannot be properly identified.
The average of the minimum singular values σL(Hξ) of the last iteration is
also given. Since identifiability is possible for cases 1 and 2, the physically
meaningful bound for O3, σL(Hξ) ≥ 1, seems to be a too strong condition.
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5 Conclusion and Discussions

Necessary mathematical conditions were developed to ensure the quality of
calibration with respect to the final accuracy. According to those conditions,
a physically meaningful stop criterion for the optimization algorithm can be
derived. Those conditions were illustrated on a simple serial example but also
stand for parallel manipulators.

The developed conditions also enable the calculus of a lower bound for the
minimum singular value of the observability matrix, after a proper scaling.
This bound leads to a sufficient condition for observability but seems overesti-
mated since it considers the worst case. More studies are needed to derive the
most appropriate formula for this threshold. However, the developed scaled
observability matrix must be of prime interest for a proper choice of the con-
figurations of measurement. In the same field, (C3) shows that considering
the sensitivity of the identification function to measurement noise and sensor
inaccuracy through matrices Gp

y and Gp
ρ must also be of prime interest.
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