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Abstract This paper investigates a new approach for solving the forward kinemat-
ics of cable-driven parallel robots. This approach combines an interval algorithm
with neural networks to provide a fast but accurate initial guess. The neural net-
works increase the computation speed by a factor of 200 or more, while the interval
algorithm provides guaranteed convergence and a definite solution to any chosen
degree of accuracy. Iterative techniques are faster still,but the proposed algorithm
is considered real-time feasible.
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1 INTRODUCTION

Cable-driven parallel robots, from now on referred to as cable robots, are a class of
parallel robots actuated by flexible cables instead of rigidmembers.

We will differentiate between two types of cable robots. Completely/redundantly
restrained cable robots, where the number of cablesm exceeds the degrees of free-
dom n in order to achieve full control; and a second type of cable robot: the sus-
pended cable robots. Suspended cable robots rely on an external wrench to control
the robot position and are most often seen as hanging structures.

The forward kinematics – obtaining platform pose from cablelengths – of par-
allel machines is a difficult problem. However, for the operation and for advanced
control techniques of cable robots, a numerically stable and fast computation of the
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Geometry in [m]
ai: i x y z

1 [ −4.3 3.0 4.6 ]T

2 [ 4.3 3.0 4.5 ]T

3 [ 4.0 −2.7 4.6 ]T

4 [ −4.0 −2.8 4.7 ]T

5 [ −4.3 2.9 0.5 ]T

6 [ 4.3 2.9 0.4 ]T

7 [ 4.0 −2.8 0.4 ]T

8 [ −4.0 −2.8 0.6 ]T

bi: i x y z
1 [ −0.7 0.2 −0.1 ]T

2 [ 0.6 0.2 −0.1 ]T

3 [ 0.6 −0.1 −0.1 ]T

4 [ −0.6 −0.1 −0.1 ]T

5 [ −0.8 0.2 0.4 ]T

6 [ 0.8 0.2 0.4 ]T

7 [ 0.8 −0.0 0.4 ]T

8 [ −0.8 −0.0 0.4 ]T

Fig. 1 IPAnema Robot with Geometrical Parameters: base vectorai and platform vectorbi

forward kinematics is needed. In practice, this is often achieved by using optimiza-
tion algorithms.

In this paper an algorithm for completely restrained cable robots, based on com-
bining neural networks with interval arithmetic, is introduced and tested. This com-
bined approach offers greater computational speed than algorithms purely based on
interval arithmetic, whilst maintaining strict confidencein the obtained solution.

2 LITERATURE REVIEW

Various methods to compute the forward kinematics of parallel manipulators al-
ready exist. In some specific cases the problem can be simplified due to specific
geometrical traits, resulting in a set of algebraic descriptions which can easily be
solved symbolically [3, 12]. Algebraic formulations have also been made for the
general case, resulting in high-degree polynomials which are very difficult to solve
[7]. Merlet introduced a numerically more stable approach for the general parallel
machine using Interval Arithmetic [9].

These approaches stand in contrast to the iterative optimization techniques,
which evaluate the inverse Kinematics repeatedly, to gain an increasingly accurate
pose with each step. The computation time of such techniquesis acceptable and has
been successfully implemented for real-time execution on robot systems [10].

Suspended cable robots require additional considerationswhen evaluating the
kinematics. Since the external wrench applied by gravity isan integral part to the
robots structure, it needs to be taken into account when evaluating the robot’s pose.
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Recent publications discuss this static and dynamic coupling and propose algebraic
solutions [2, 4]. Ghasemi has presented a successful implementation of neural net-
works to find the solution for a suspended cable robot [5].

2.1 Shortcomings of existing Methods

Despite having a wide range of computational approaches to choose from, the eval-
uation of forward kinematics remains a challenge, especially when considering real
time constraints on modern machines. Simplifying the problem through the selec-
tion of special geometries is not always a feasible step depending on the constraints
of the robot considered.

Mathematically exact methods, which are capable of finding all possible solu-
tions and using heuristics to select the right one, are not feasible for production ma-
chines due to numerical instabilities or excessive computation time. Interval arith-
metic on the other hand yields certain guarantees due to its deterministic nature. Un-
fortunately, interval arithmetic routines are based on exhaustive search algorithms
and typically do not perform in a real-time environment.

Faster iterative optimization algorithms, however, demand a good initial guess
for the solution and do not guarantee convergence. This can have unexpected con-
sequences and requires additional sub-routines to manage non-convergence, or even
divergence from the solution.

Neural networks are computationally fast algorithms but also lack the capability
of providing a guaranteed solution or any indication of confidence. Further, these
networks need to be trained a-priori, consuming additionaltime and effort.

All approaches suffer under kinematic sensitivity [8]. This provides a measure
of how numerically sensitive the poses are to changes in the cable lengths and an
indication why some solutions are hard to find. Further discussion is out of scope
for this paper.

2.2 Benefits of the combined approach

Using neural networks to provide a fast initial estimate forthe solution and then
applying an interval algorithm to the smaller search space,combines the strengths
of these two methods. Unlike optimization algorithms interval analysis can easily
differentiate between whether an exact solution can be found in the given bound,
to a predetermined level of accuracy, or whether a solution is indeterminable. Even
detecting singularities is plausible [9]. Neural Networks, once trained, provide a
very fast evaluation with minimal computational effort.

It is this combination approach which enables a robust, but still relatively fast
computational method.
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3 DESCRIPTION OF THE COMBINATION APPROACH

The cable-driven parallel robot IPAnema illustrated in Figure 1, has eight cables and
six degrees of freedom, making it redundantly restrained. The geometry is described
using two coordinate systems, one for the platformKP and one global coordinate
system for the baseKO . The vector notation describes the inverse kinematics for
cablei as:

‖ai − r−Rbi‖2 = li for i = 1, ...,m (1)

whereai,bi,r are vectors describing attachment points and platform position, li is
the length of the cable andR the rotation matrix at a given pose.

The forward kinematics currently implemented in the IPAnema cable robot [10]
uses a Levenberg-Marquardt (LM) algorithm to optimize the function

Ψi (l,r,R) = (‖ai− r−Rbi‖2)
2− l2

i for i = 1, ...,m (2)

to finde the poser,R for a set of cable lengthsli.
For the interval algorithm a different parameterization, based on distance equa-

tions, is used. This parameterization focuses on finding theposition of f linearly
independent reference points in the global coordinate frame and hence the pose of
the platform. These reference points on the platform were chosen to be cable at-
tachment points and are chosen so that all other attachment points j are linearly
dependent on these reference pointsk. This relation in the coordinate systemKP is
described by

b j = ∑
k

Cbk, (3)

where the conversion matrixC is calculated offline.
The equation sets describing the kinematics, which are solved by the interval

algorithm are then as follows. The cable length for each reference point(xk,yk,zk)

(xk −Ax
k)

2+
(

yk −Ay
k

)2
+
(

zk −Az
k

)2
= l2

k for k ∈ 1,2, ..., f , (4)

the remaining cable lengths

(

f

∑
k=1

Cxk −Ax
j

)2

+

(

f

∑
k=1

Cxk −Ay
j

)2

+

(

f

∑
k=1

Cxk −Az
j

)2

= l2
j for j ∈ f +1, ...,n

(5)
and the distance between reference point pairs

(xp − xq)
2+(yp − yq)

2+(zp − zq)
2 = δ 2

pq for p,q ∈ 1,2, ..., f , p 6= q. (6)

This parameterization is better suited for interval methods as it avoids overestima-
tion of the interval bounds due to each variable being represented only once in each
equation. It was found that this formulation of the forward kinematics problem was
not beneficial for the iterative methods over an Euler Angle representation used to
generate rotation matrixR in equations (1) and (2).
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3.1 Neural Network

In the combination approach the pose of the platform is initially estimated by a set of
neural networks. This greatly reduces the search space for the more time consuming
interval algorithm. The neural network sets return a particular solution for the four
reference point positions, whose error/uncertainty bounds define the initial search
space of the interval algorithm.

The neural network was designed and implemented using the ”Stuttgart Neural
Network Simulator” (RSNNS) in the R statistical programming language [1]. The
design is based on the multilayer perceptron (MLP), also used by Ghasemi [5]. In
this case one neural network was used to determine the position (x,y,z) of a given
reference point. Each neural network was built with four hidden layers containing
70 neurons each. Since the IPAnema cable robot has eight cables this results in a
8×70×70×70×70×3 MLP architecture.

The neural network was trained in a supervised approach withstandard back-
propagation, using default learning parameters of RSNNS. For a random pose the
reference point positions and cable lengths are evaluated through the inverse kine-
matics (1). Then the artificial neural network calculates the reference point posi-
tions. The error residual sum of squares in the computed reference point positions
is used to determine the weight adjustments of the individual neurons. One epoch
repeats this process for every pose in a training set. A test set evaluates the perfor-
mance of the neural network whose error is minimized over 800epochs.

The full set of poses consists of 100,000 random poses in a workspace of 6×5×
4 m in x,y,z and rotations in the range of±20◦ about each axis. 40,000 poses were
used as a training set and the remaining 60,000 as a test set. Feature normalization
was also applied for the cable lengths in the stated workspace.

Graphs in Figure 2 show the results of a single network training. The histogram
shows the distribution of the final absolute error of the testset. The maximum error
determines the bounds of initial search space for the interval algorithm,±0.02m.
This speeds up the computation time. While interval analysis is a complex iterative
procedure, successive operations necessary for each neuron will only be evaluated
once.

Fig. 2 Single Neural Network Training Results
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3.2 Interval Algorithm

The interval algorithm based on [9] resembles a bisection method. The workspace is
divided into successively smaller boxes which are then evaluated against the para-
metric equations (4), (5), (6) with interval arithmetic. A box is a 12 dimensional
hyper-cube of the(x,y,z) values of the four reference points. The starting box was
based on the maximum error produced by the neural network test set. Interval arith-
metic then determines whether a solution to the parametric equations exists within
this box, does not exist, or cannot be determined. This branch and bound algorithm
discards boxes containing no solution and continues to divide the rest, until a suffi-
ciently small (specified by the desired accuracy) box without a solution is reached.

This is a deterministic and time consuming method to obtain asolution to the for-
ward kinematics problem. Several techniques to speed up this process by reducing
box sizes are implemented. One technique is evaluating for hull (or 2B) consistency
as in constraint satisfaction problems as shown by [9]. Herethe constraints of a sin-
gle variable in the parametric equations are shrunk by thosedefined for the other
variables. This can be repeated indefinitely, but tests showed that once the improve-
ment was below 25% it was more efficient to return to the branchand bound.

Another very effective method to reduce box size was the Interval-Gauss-Seidel
method [11], which not only reduces the hyper-volume of a box, but also mitigates
effects of solution clustering. Here the variable bounds are also shrunk individually
using an iterative technique by applying the formula of a classic linear equation
system to this variable.

These methods make the computation more efficient, but not tothe same scale as
the initial guess by the neural network.

4 PERFORMANCE EVALUATION

The algorithms for solving the forward kinematics are implemented in C++. This
enables the use of SIMD instruction sets on an x64 architecture to provide a signifi-
cant increase in speed for interval calculations and is discussed in detail by [6]. The
processor used for testing was an Intel i7-2600K with 3.40 GHz.

Table 1 shows the results of a quick comparative benchmark ofthree algorithms
implemented under identical conditions. A random pose listof 1000 poses, with
corresponding cable lengths was generated using equation (1). Poses were in a 4×
4×3 m box in the workspace and described by a rotation of−10◦ to 10◦ for each
Euler Angle. Each algorithm calculated every pose to an accuracy of 0.00001m.

The computational speed of the Interval Algorithm is greatly increased through
the use of neural networks. The average computation time decreased by more than
a factor of 200, the number of boxes even more. This makes the approach more
real-time feasible.

Maximum time to solution could not be evaluated for the LM optimization as it
was too fast for the timer resolution, so the average was taken from the total time
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Table 1 Computation time tested on IPAnema geometry

Interval Algorithm Interval Algorithm Levenberg-Marquardt
with Neural Network Optimization [10]

Max. Evaluation Time [s] 0.764 0.016 N/A
Avg. Evaluation Time [s] 0.292 0.00121 0.000015

Max. No. of Boxes/Iterations 173356 303 5
Avg. No. of Boxes/Iterations 60690 77 4

over 1000 iterations. Keeping in mind that the initial pose estimate is tailored for
this cable robot geometry, the optimization algorithm computes extremely fast.

Neural networks do need to be retaught for significant geometry changes, but
have no limitations as to the type of geometry to solve. Further, the interval algo-
rithm still can provide certainty of the solution and guarantee convergence, which
the optimization cannot.

5 CONCLUSIONS

It was shown that combining neural networks with the standard implementation of
interval arithmetic to solve the forward kinematics of cable robots provides signif-
icant decrease in computation time. This enables a more real-time feasible imple-
mentation, while retaining strengths of the interval methods. While the speed does
not surpass that of highly optimized LM iterative solutions, it provides a method
with guaranteed convergence, and the possibility of findingnumerous poses. It is a
viable alternative for actual real-time controllers.

Improvements can still be made. The neural network trainingalgorithm could
be optimized to provide a more accurate initial guess. Several steps in the interval
algorithm could be taken to optimize the switching between the branch and bound,
consistency checks, and the Interval-Gauss-Seidel method. This is difficult to opti-
mize for the general case.

The teaching of neural networks is still an issue, as it diminishes the ease of
changing geometric configuration. However, slight configuration changes still en-
able the neural network to converge enough for the interval algorithm to run at ac-
ceptable speeds. Further, the only requirement for teaching the networks is a work-
ing inverse kinematic implementation. This process can be heavily automated.

Problems of kinematic sensitivity are not addressed by either of these algorithms,
but are still subject of ongoing research.

ACKNOWLEDGMENT

This work was partially supported by the Fraunhofer-Gesellschaft Internal Programs
under Grant No. WISA 823 244. Furthermore, the research leading to these results

Auth
or'

s v
ers

ion



8 Valentin Schmidt, Bertram Müller, Andreas Pott

received founding for the European Communitys Seventh Framework Program un-
der grant agreement number NMP2-SL-2011-285404-CableBot.

References

[1] Bergmeir, C., Benı́tez, J.M.: Neural networks in R usingthe Stuttgart neu-
ral network simulator: RSNNS.Journal of Statistical Software 46(7), 1–26
(2012). http://www.jstatsoft.org/v46/i07/

[2] Berti, A., Merlet, J.P., Carricato, M.: Solving the direct geometrico-static prob-
lem of 3-3 cable-driven parallel robots by interval analysis: Preliminary re-
sults. Cable-Driven Parallel Robots, vol. 12, pp. 251–268. Springer Berlin
Heidelberg (2013)

[3] Bosscher, P., Williams II, R.L., Bryson, L.S., Castro-Lacouture, D.: Cable-
suspended robotic contour crafting system.Automation in Construction 17(1),
45–55 (2007)

[4] Carricato, M., Abbasnejad, G.: Direct geometrico-static analysis of under-
constrained cable-driven parallel robots with 4 cables.Cable-Driven Parallel
Robots, vol. 12, pp. 269–285. Springer Berlin Heidelberg (2013)

[5] Ghasemi, A., Eghtesad, M., Farid, M.: Neural network solution for forward
kinematics problem of cable robots.Journal of Intelligent & Robotic Systems
60(2), 201–215 (2010)

[6] Goualard, F.: Fast and Correct SIMD Algorithms for Interval Arithmetic.
In: Proceedings of PARA ’08,Lecture Notes in Computer Science. Springer,
Trondheim, Norvège (2010)
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