PDFaid.Com
#1 Pdf Solutions

Solving the Forward Kinematics of
Cable-Driven Parallel Robotswith Neural
Networ ks and Interval Arithmetic

Valentin Schmidt, Bertram Miller, Andreas Pott

Abstract This paper investigates a new approach for solving the fahkememat-
ics of cable-driven parallel robots. This approach combiae interval algorithm
with neural networks to provide a fast but accurate initiaegs. The neural net-
works increase the computation speed by a factor of 200 oe mdrile the interval
algorithm provides guaranteed convergence and a definiidi@oto any chosen
degree of accuracy. lterative techniques are faster Istitithe proposed algorithm
is considered real-time feasible.

Key words: cable-driven parallel robots, neural networks, intervahanetic, kine-
matics.

1 INTRODUCTION

Cable-driven parallel robots, from now on referred to adeatibots, are a class of
parallel robots actuated by flexible cables instead of mgénbers.

We will differentiate between two types of cable robots. @etely/redundantly
restrained cable robots, where the number of cablegceeds the degrees of free-
domn in order to achieve full control; and a second type of cableotothe sus-
pended cable robots. Suspended cable robots rely on amabieamench to control
the robot position and are most often seen as hanging stesctu

The forward kinematics —obtaining platform pose from cdblggths— of par-
allel machines is a difficult problem. However, for the ogieraand for advanced
control technigues of cable robots, a numerically stabtefast computation of the
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Fig. 1 IPAnema Robot with Geometrical Parameters: base vectamd platform vectob;

forward kinematics is needed. In practice, this is ofteri@ad by using optimiza-
tion algorithms.

In this paper an algorithm for completely restrained cableots, based on com-
bining neural networks with interval arithmetic, is intromed and tested. This com-
bined approach offers greater computational speed thanitlms purely based on
interval arithmetic, whilst maintaining strict confidenioghe obtained solution.

2 LITERATURE REVIEW

Various methods to compute the forward kinematics of paratanipulators al-
ready exist. In some specific cases the problem can be sieaptifie to specific
geometrical traits, resulting in a set of algebraic desicnys which can easily be
solved symbolically [3, 12]. Algebraic formulations havie@been made for the
general case, resulting in high-degree polynomials whiehvary difficult to solve
[7]. Merlet introduced a numerically more stable approawttiie general parallel
machine using Interval Arithmetic [9].

These approaches stand in contrast to the iterative ogttioiz techniques,
which evaluate the inverse Kinematics repeatedly, to gaimereasingly accurate
pose with each step. The computation time of such technigueeseptable and has
been successfully implemented for real-time executioroot systems [10].

Suspended cable robots require additional consideratitven evaluating the
kinematics. Since the external wrench applied by gravignisntegral part to the
robots structure, it needs to be taken into account whematiay the robot’s pose.
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Recent publications discuss this static and dynamic cogplhd propose algebraic
solutions [2, 4]. Ghasemi has presented a successful ingpittion of neural net-
works to find the solution for a suspended cable robot [5].

2.1 Shortcomings of existing Methods

Despite having a wide range of computational approachesdose from, the eval-
uation of forward kinematics remains a challenge, espgaidien considering real
time constraints on modern machines. Simplifying the probthrough the selec-
tion of special geometries is not always a feasible steprudipg on the constraints
of the robot considered.

Mathematically exact methods, which are capable of findihgassible solu-
tions and using heuristics to select the right one, are rasilite for production ma-
chines due to numerical instabilities or excessive contfmtdime. Interval arith-
metic on the other hand yields certain guarantees due tetésministic nature. Un-
fortunately, interval arithmetic routines are based onaegtive search algorithms
and typically do not perform in a real-time environment.

Faster iterative optimization algorithms, however, dethargood initial guess
for the solution and do not guarantee convergence. This aa@ binexpected con-
sequences and requires additional sub-routines to marmageanvergence, or even
divergence from the solution.

Neural networks are computationally fast algorithms bsbdck the capability
of providing a guaranteed solution or any indication of cdefice. Further, these
networks need to be trained a-priori, consuming addititina¢ and effort.

All approaches suffer under kinematic sensitivity [8]. Jipirovides a measure
of how numerically sensitive the poses are to changes inah&dengths and an
indication why some solutions are hard to find. Further dismn is out of scope
for this paper.

2.2 Benefits of the combined approach

Using neural networks to provide a fast initial estimate tfog solution and then
applying an interval algorithm to the smaller search spasmbines the strengths
of these two methods. Unlike optimization algorithms imédranalysis can easily
differentiate between whether an exact solution can bedanrthe given bound,
to a predetermined level of accuracy, or whether a soluiondeterminable. Even
detecting singularities is plausible [9]. Neural Netwqrksce trained, provide a
very fast evaluation with minimal computational effort.

It is this combination approach which enables a robust, tilitrslatively fast
computational method.
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3 DESCRIPTION OF THE COMBINATION APPROACH

The cable-driven parallel robot IPAnema illustrated inUfigl, has eight cables and
six degrees of freedom, making it redundantly restrainbd.geometry is described
using two coordinate systems, one for the platfo#® and one global coordinate
system for the base?,. The vector notation describes the inverse kinematics for
cablei as:

[l —r —Rbjlj2=I; fori=1,..m (1)

wherea;, bj,r are vectors describing attachment points and platforntipasi; is
the length of the cable ari’lthe rotation matrix at a given pose.

The forward kinematics currently implemented in the IPAaerable robot [10]
uses a Levenberg-Marquardt (LM) algorithm to optimize tivection

W (,r,R)=(|la—r —Rbj|[2)2 =12 fori=1,...m 2)

to finde the pose,R for a set of cable lengtHs

For the interval algorithm a different parameterizatioaséd on distance equa-
tions, is used. This parameterization focuses on findingptisition of f linearly
independent reference points in the global coordinatedramd hence the pose of
the platform. These reference points on the platform wegseh to be cable at-
tachment points and are chosen so that all other attachnoamsyg are linearly
dependent on these reference pokafEhis relation in the coordinate syste#i, is

described by
bj = ZCbk, 3

where the conversion matr® is calculated offline.
The equation sets describing the kinematics, which aresdoby the interval
algorithm are then as follows. The cable length for eachresiee poin{x, Yk, z)

0% — A%+ (Y — AY) "+ (2= AY)

the remaining cable lengths

2 2

=12 forke1,2,...f, (4)

§ 2 £ 2 § 2
(zc:xk—AJ*> +<chk—AJ¥> +<ZCXK—AJ?> =1# forjef+1..n
k=1 k=1 k=1

(5)

and the distance between reference point pairs

(Xp—Xq)2+ (Yp— Vo) + (zp—29)* = 82, forp,gel,2....f,p£q.  (6)

This parameterization is better suited for interval methasl it avoids overestima-
tion of the interval bounds due to each variable being regrtesl only once in each
equation. It was found that this formulation of the forwanddmatics problem was
not beneficial for the iterative methods over an Euler Angleresentation used to
generate rotation matri® in equations (1) and (2).
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3.1 Neural Network

In the combination approach the pose of the platform isdthtiestimated by a set of
neural networks. This greatly reduces the search spacedonore time consuming
interval algorithm. The neural network sets return a palgicsolution for the four
reference point positions, whose error/uncertainty bguwefine the initial search
space of the interval algorithm.

The neural network was designed and implemented using tlugt¢@rt Neural
Network Simulator” (RSNNS) in the R statistical programmianguage [1]. The
design is based on the multilayer perceptron (MLP), alsa liseGhasemi [5]. In
this case one neural network was used to determine the guogitiy, z) of a given
reference point. Each neural network was built with fourdeid layers containing
70 neurons each. Since the IPAnema cable robot has eighgsctiti$ results in a
8x 70x 70x 70x 70x 3 MLP architecture.

The neural network was trained in a supervised approach stéthdard back-
propagation, using default learning parameters of RSNN&aFandom pose the
reference point positions and cable lengths are evaluhateddh the inverse kine-
matics (1). Then the artificial neural network calculates teference point posi-
tions. The error residual sum of squares in the computederée point positions
is used to determine the weight adjustments of the individaarons. One epoch
repeats this process for every pose in a training set. A &shaluates the perfor-
mance of the neural network whose error is minimized over&firhs.

The full set of poses consists of 100,000 random poses in kswace of 6< 5 x
4m inx,y,z and rotations in the range &f20° about each axis. 40,000 poses were
used as a training set and the remaining 60,000 as a tesesgtir€& normalization
was also applied for the cable lengths in the stated worlespac

Graphs in Figure 2 show the results of a single network tngint he histogram
shows the distribution of the final absolute error of the $e$t The maximum error
determines the bounds of initial search space for the iatetgorithm,+0.02 m.
This speeds up the computation time. While interval analigsa complex iterative
procedure, successive operations necessary for eachmeilronly be evaluated
once.
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Fig. 2 Single Neural Network Training Results
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3.2 Interval Algorithm

The interval algorithm based on [9] resembles a bisectiothate The workspace is
divided into successively smaller boxes which are thenuataet against the para-
metric equations (4), (5), (6) with interval arithmetic. Abis a 12 dimensional
hyper-cube of théx,y, z) values of the four reference points. The starting box was
based on the maximum error produced by the neural netwarkeednterval arith-
metic then determines whether a solution to the paramejtiatéons exists within
this box, does not exist, or cannot be determined. This brand bound algorithm
discards boxes containing no solution and continues taldithe rest, until a suffi-
ciently small (specified by the desired accuracy) box wittgosolution is reached.

This is a deterministic and time consuming method to obtaiwlation to the for-
ward kinematics problem. Several techniques to speed gptbicess by reducing
box sizes are implemented. One technique is evaluatingulb¢dr 2B) consistency
as in constraint satisfaction problems as shown by [9]. le¥eonstraints of a sin-
gle variable in the parametric equations are shrunk by the$i@ed for the other
variables. This can be repeated indefinitely, but tests eddivat once the improve-
ment was below 25% it was more efficient to return to the bramzhbound.

Another very effective method to reduce box size was theateGauss-Seidel
method [11], which not only reduces the hyper-volume of a, lbok also mitigates
effects of solution clustering. Here the variable boun@saso shrunk individually
using an iterative technique by applying the formula of sl linear equation
system to this variable.

These methods make the computation more efficient, but ribetsame scale as
the initial guess by the neural network.

4 PERFORMANCE EVALUATION

The algorithms for solving the forward kinematics are inmpdanted in C++. This
enables the use of SIMD'instruction sets on an x64 archite¢tuprovide a signifi-
cant increase in speed for interval calculations and isudised in detail by [6]. The
processor used for testing was an Intel i7-2600K with 3.4@GH

Table 1 shows the results of a quick comparative benchmatkeé algorithms
implemented under identical conditions. A random posedfst000 poses, with
corresponding cable lengths was generated using equajioRdses were in a4
4 x 3m box in the workspace and described by a rotation df° to 10° for each
Euler Angle. Each algorithm calculated every pose to anracguof Q00001 m.

The computational speed of the Interval Algorithm is greattreased through
the use of neural networks. The average computation timedsed by more than
a factor of 200, the number of boxes even more. This makesgpsach more
real-time feasible.

Maximum time to solution could not be evaluated for the LMioyitation as it
was too fast for the timer resolution, so the average wastédoen the total time
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Table1 Computation time tested on IPAnema geometry

Interval Algorithm Interval Algorithm Levenberg-Marqudir
with Neural Network  Optimization [10]

Max. Evaluation Time [s] 0.764 0.016 N/A

Avg. Evaluation Time [s] 0.292 0.00121 0.000015
Max. No. of Boxes/Iterations 173356 303 5
Avg. No. of Boxes/Iterations 60690 77 4

over 1000 iterations. Keeping in mind that the initial poséreate is tailored for
this cable robot geometry, the optimization algorithm coeg extremely fast.

Neural networks do need to be retaught for significant gegnatanges, but
have no limitations as to the type of geometry to solve. Farrtthe interval algo-
rithm still can provide certainty of the solution and gudesnconvergence, which
the optimization cannot.

5 CONCLUSIONS

It was shown that combining neural networks with the stasidi@plementation of
interval arithmetic to solve the forward kinematics of @hbdbots provides signif-
icant decrease in computation time. This enables a mordinealfeasible imple-
mentation, while retaining strengths of the interval mehdNhile the speed does
not surpass that of highly optimized LM iterative solutipiigprovides a method
with guaranteed convergence, and the possibility of findimgerous poses. Itis a
viable alternative for actual real-time controllers.

Improvements can still be made. The neural network traimilggrithm could
be optimized to provide a more accurate initial guess. S&wdeps in the interval
algorithm could be taken to optimize the switching betwdenliranch and bound,
consistency checks, and the Interval-Gauss-Seidel mettoslis difficult to opti-
mize for the general case.

The teaching of neural networks is still an issue, as it dishies the ease of
changing geometric canfiguration. However, slight configion changes still en-
able the neural network to.converge enough for the intetgalrdhm to run at ac-
ceptable speeds. Further, the only requirement for tegehanetworks is a work-
ing inverse kinematic implementation. This process candawily automated.

Problems of kinematic sensitivity are not addressed bgedhthese algorithms,
but are still subject of ongoing research.
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