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Self-Calibration of Redundantly Actuated PKM
exploiting Kinematic Landmarks

Andreas Miiller and Maurizio Ruggiu

Abstract A self-calibration method for redundantly actuated parallel manipulators
(RA-PKM) is proposed that uses motion reversal points (MRP) of actuators as kine-
matic calibration landmarks. The basic principle is to restrain a RA-PKM to 1 DOF
and detect the MRP of redundant actuators. The difference of measured MRP and
those deduced from a kinematic model embodies the calibration error. Therewith
a numerical adaptation scheme is introduced. Simulation results for a 3 DOF RA-
PKM confirm very high accuracy of the method.
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1 Introduction

Kinematic calibration of robotic manipulators is commonly based on the acquisi-
tion of redundant measurement data [4, 10, 13, 14]. Actuator readings are compared
with external end-effector (EE) measurements. The need for external measurement
devices makes the calibration expensive and prohibits simple repetition. Moreover,
due to the external measurements, traditionally calibration methods are inherently
intrusive. In order to alleviate this intrusion several authors [1, 5, 12, 15, 17] pro-
posed to acquire redundant measurements by locking selected joints of a parallel
kinematics machine (PKM). Other schemes aiming at semiautonomous calibration
are reported in [16] and [20] where some passive joints are equipped with sensors
providing redundant sensor data without application of external devices. A fully au-
tonomous self-calibration method should not require additional sensors, externally
or at passive joints. An import observation is that redundant actuation implies sen-
sor redundancy since it does not increase the DOF of a PKM but gives rise to more
encoder readings than necessary to position the PKM. It thus allows for application
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of the traditional calibration methods as pursued in [18]. Other tailored calibra-
tion methods were reported in [2, 19] exploiting the tracking error projected to the
null-space of the forward kinematics Jacobian. In this paper a calibration method is
proposed that follows a completely different approach. Instead of comparing redun-
dant sensor data the occurrence of kinematic landmarks is compared and exploited
for adaptation of the geometric machine parameters. These landmarks are detected
inherently by means of actuator measurements. The redundancy required for cali-
bration is thus achieved by the actuation redundancy. The simulations reveal a high
accuracy of the method. Throughout the paper configurations where the velocity of
one actuator becomes zero, while the EE performs continuous motion, will be called
motion reversal points (MRP) of that actuator. § denotes the manipulator’s DOF.
The vector summarizing the geometric model parameters is denoted & € II where
II is a p-dimensional parameter space manifold.

2 Main Principle: Motion Reversal Points

Undoubtedly kinematic singularities are significant kinematic landmarks intrinsi-
cally related to the PKM geometry, and it shall be expected that this can be exploited
for the calibration purpose. A singularity-based calibration method was proposed
for a non-redundant planar 3-DOF PKM [6, 7, 8], and later applied [11] to the cal-
ibration of a non-redundant spatial 3PRS PKM. The basic idea of that method is
to detect active input singularities [3] in the plant by measurements in the actuated
joints as well as in a parameterized kinematic model, and to adapt the geometric
parameters so that these singularities coincide. Active singularities are character-
ized by a reversing motion, i.e. a zero velocity, of some actuator coordinates for a
continuous EE-motion. This allows to detect them without additional sensors.

The calibration scheme proposed in [6, 7, 8, 11] was originally developed for
non-redundantly actuated PKM. This poses the apparent problem that the PKM
must be steered into a critical configuration in which it is not fully restrained by
means of the actuators, and cannot be controlled safely. Moreover in these situa-
tions the actuator may mutually interfere. To cope with this problem and ensure
passage through the singularity, in [6, 7, 8] the PKM was given an initial motion so
to passively swing through the input singularity, enabling detection of the revers-
ing motion of one of the actuators. In order to actually detect these singularities
the PKM’s mobility must be restrained, which is apparent observing that singu-
larities form lower dimensional subvarieties in the configuration space (c-space)
that almost sure will not be hit when the PKM can move freely in the c-space. To
this end in [6, 7, 8] the mobility was reduced to 1 DOF by deactivating the one
(backdrivable) actuator for which a MRP (i.e. a zero crossing of its velocity) is to
be detected, and locking all remaining § — 1 actuators. Then only motions of the
deactivated (backdrivable) actuator are possible, and the problem of detecting the
input singularities of that particular actuator reduces to a one-dimensional prob-
lem. Clearly then the non-redundantly actuated PKM is not controllable anymore
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since the only one movable actuator is passive. It was proposed to let the PKM pas-
sively swing through the anticipated singularity. In Fig. 1 actuators 1 and 3 could
be locked and the MRP of the released actuator 2 be observed when the PKM is
set in motion. The locked actuators 1 and 3 (with fixed lengths) together with the
platform constitute a planar 4-bar linkage. The mount point of actuator 2 moves
on the coupler curve of that 4-bar, and a MRP occurs when the point reaches the
point on that curve that is closest to the mount point on the base. This configura-
tion is indicated in Fig. 1 by a dashed line. Such passive motion requires external
stimulus and precaution. Redundant actuation allows to exploit this principle in a
safe and reliable way. The crucial point is that MRP can also be observed in RA-
PKM but without meeting input singularities, i.e. without entering critical poses.
Input-singularities of a non-redundantly ac-

tuated PKM with DOF § can be eliminated

by introducing m > O actuators, of which

p = m— 0 are redundant that can always

control the PKM. Consequently, actuation re-

dundancy allows controlling the RA-PKM

through points that are input-singularities of .
the non-redundant PKM, i.e. when controlled motion 8
by some 0 out of the m actuators. Since MRP released ¢
are significant points, that are inherently re- g
lated to the mechanism geometry, they can 2,/
be considered as kinematic calibration land-  gjg 1 MRP detection of a 3RPR manip-
marks. This is the basis for a self-calibration ulator viaa passive swing motion. Actu-
method introduced in [9] where the feasibility ators 1 and 2 are locked and 3 is free to
was demonstrated by application of an ad hoc ~MOVe passively.

minimization algorithm. In this paper the method is completed by a computationally
efficient update algorithm. The redundantly actuated 4RPR in Fig. 2a) (3RPR with
an added fourth actuated chain.is used as example. The joints are mounted at the
corners of a rectangle. The RA-PKM still has 6 = 3 DOF but is actuated by m = 4
prismatic actuators. Also for this RA-PKM joint 2 exhibits MRP, but now, due to the
actuation redundancy, the manipulator can safely be controlled through these MRP
as shown in Fig. 2a). After locking 6 — 1 = 2 actuators there are still m— 8 +1 =2
actuators left of which one is that for which MRP are sought and the other one can
be used to drive the (1-DOF) system. Actuators 1 and 4 can be locked and actua-
tor 3 be used to move the manipulator while observing the MRP of actuator 2. A
deviation of the geometric parameters from the actual plant geometry is reflected
by MRP occurring at different locations. Minimizing this difference is a means for
model calibration. This was pursued in [9] where the calibration error was defined
as the squared difference of MRP analytically computed from the kinematic model
and MRP detected in the plant for N different measurements. For example in Fig.
2b) this error would be ¢ := YN , (ég’i — Gg’i)z where 6()2’i is the MRP of actuator
joint 2 deduced from the model, and 53” is the corresponding MRP detected in the
plant for the ith measurement. The critical point when directly minimizing e is that
this is a non-linear problem and that it requires an analytic expression for the MRP.

locked.
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Fig. 2 a) Planar 3-DOF 4RPR RA-PKM. b) Detection of MRP of actuator 2. Actuators 1 and 4 are
locked, and 3 is actuated. The MRP occurs when point B is closest to point A, as indicated.

Here a MRP-based calibration method is introduced that does not suffer from these
restrictions. For RA-PKM with actuation redundancy p = m — § it consists of three
constituent parts: 1) the restriction of the RA-PKM mobility to 1 DOF by locking
6 — 1 actuators, 2) detection of MRP, and 3) model adaptation.

3 Selection of Locked Actuators

The RA-PKM is restrained to 1-DOF motions by locking & — 1 actuators. This
leaves a manipulator with m — § + 1 movable actuators. Out of these one actua-
tor is used to drive the restrained RA-PKM.: The remaining p = m — § actuators
are deactivated and presumed to be backdrivable. Since actuators are equipped with
encoders the MRP of these p joints can be detected by controlling the 1-DOF mo-
tion. The choice of locked actuators is not unique. In general there are C§' | = ( 5?1)
different possibilities to lock 8 —1 of the m actuators. Most RA-PKM reported in
the literature possess simple actuation redundancy, i.e. m = 6 + 1, p = 1, and this
assumed in the following. Then 6 — 1 = m — 2 actuators must be locked, for which
there are C)}_, = w different possibilities. Fixing 6§ — 1 actuators leaves two
unlocked. One of these two can be controlled so to detect the MRP of the other one.
In this way, for'each one of the C); , combinations, the MRP of one deactivated
actuator can be detected. For each combination of locked actuators there are two
possible actuation schemes. In total there are 2C);_, different actuation schemes for
detecting MRP (generally (p +1)C§'_,).

Denote 8= (6',...,6™) the vector of actuator coordinates. For each of the C"_,
possibilities denote with 6, =1,...,C)"_, the vector of the 6 — 1 locked actuator
coordinates. The remaining two free actuator coordinates are denoted with 6/ and
0, where j refers to the controlled and i to the free passive actuator for which the
MRP is sought. The coordinate vector  is thus partitioned into 6;, 8/ and 6'. In
Fig. 2b) itis 6, = (6',6%), 6/ = 6°, and 6" = 6°.
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4 Detection of MRP

For a specified set [ of locked actuators, the detection of MRP of 0’ in the model
requires an indicator function, denoted with Fi.l]-, such that Filj = 0 if and only if

6" = 0 for any 6/. The condition F;; = 0 allows inferring the joint coordinate 6 of
the controlled actuator where MRP of the free passive actuator i occurs in the model
for given 6; and geometry 7. An obvious candidate for such an indicator function is
the velocity inverse kinematics solution for actuator i (sec. 6). The MRP of actuator
joint i deduced from the model is denoted 66. In Fig. 2b) the indicator function F»3
returns the velocity of joint 2 when the manipulator is driven by actuator 3 with
the remaining joints 1 and 4 locked. The MRP in the plant are detected monitoring
the sign of the velocity of the free passive actuator i while performing a smooth
1-DOF motion controlled by actuator j. The detected MRP are only exact up to the
measuring accuracy/encoder resolution, and denoted 9(’;.

5 Calibration Algorithm

The model adaptation exploits the difference of MRP predicted in the model and
those measured in the plant. By locking different sets of 8 — 1 actuators the MRP
can be detected for all m actuators. For a particular set of locked actuators, indexed
with /, the remaining two actuator coordinates are interchangeably used to drive the
1-DOF system. This detection is repeated atN different points in the c-space, i.e.
for different values of 6; giving rise to an input data set for the calibration.

The strategy is to detect the MRP.of actuator i for a set of locked actuators.
Crucial for the calibration algorithm is the indicator function. It is thus desirable to
have an indicator function that only depends on 8’ and 6;, which represent § non-
redundant actuator coordinates. But, depending on the complexity of the kinematics,
it may not possible to analytically construct such an indicator function. These cases
are distinguished in the following. The PKM pose is locally uniquely determined
by § actuator coordinates, and in particular by the actuator coordinates 6° and 6;.
Now by definition this unique dependence ceases at the MRP of actuator i. In the
4RPR example in Fig. 2b) the motion is determined by 6'!,6*, and 6% except at
the MRP of joint 2. Nevertheless, presumed that the closed loop constraints can
be expressed in terms of these & actuator coordinates, it can be assumed that the
indicator function attains the form 1’71-114(6’A7 0y; ). That is, F does not depend on the

controlled actuator coordinate 6/ nor on any coordinates of passive joints. Let 55 =
6; + A6} be the measured joint coordinate of the passive actuator i where its MRP
occurs. A6 represents the deviation from the joint coordinate 8y where MRP occurs
in the model. Denote with

T=m+Ax (1

the (unknown) geometric parameters of the plant. Here 7 is the nominal geometry
used as initial value in the model, A7 is the geometric imperfection to be estimated.
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Evaluating the indicator function with the measured MRP values and the nominal
model parameters will yield Fllj( 6, 6;,m) # 0. That is, using the nominal model
parameters, the analytic indicator function would not detect the MRP. Moreover, the
value of Fllj does represent a calibration error. This error is minimized adapting 7.

Since the locked actuator coordinates 6; are input to model and plant the only
information about model uncertainties are conveyed by 66. Hence, treating A 96 and
AT as variables, and neglecting measurement errors, leads to the first-order condi-

tion
1 !

F(65,9 O pog+ 2 Az — o 2
U( 0> 1771:0)_86,' O+ 875 n=0. ()
The measurement is repeated at N; different locations of MRP of 6’ giving rise to
an overdetermined linear system

JF!. . ~ o~ IFL
I

ael;AB(l),l_Ej(96,1»91,1,ﬂ0) =
9Fj 1 pi S~ oo oF].

J i (i ]
7614002 — Fij(60,,612,m0) | | 57 Ax 3
s nei  _FlLB B IF;
o 20N, T ij( 0,N; N ), pr

written as y; = M;Ax, where the partial derivatives of Fllj are evaluated at 96 e e

o,k =1,...,N;. The values of A 66‘ 0= 5(’) 0 967 . are computed from the difference
of measured values and those deduced from the model. For p parameters M; is a
N; x p matrix. This measurement procedure can be carried out for different choices
of locked actuators indicated by the subscript /, for which there are 2C},_, options.
It is usually not necessary to exhaust all these combinations, however. Denote with
M the N x p matrix comprising the M; submatrices, and with y the corresponding
left-hand side vector of length N. The system (3) is solved via a pseudoinverse of M
as AT = (MTM) - MTy. The final update for the parameter vector is T = my + AT.
The solution 7 of the linear approximation (2) may not lead to a vanishing F,lj
Therefore the adaptation step is repeated. Denoting with 7, the obtained parameter
values at step v = 1,2,... then an improved estimate 7, is found by application
of the above update step with 7, as initial parameter. The calibration starts with 7.

6 Simulation Example

The planar 3 DOF 4RPR RA-PKM in Fig. 2a) has m = 4 of actuators and actu-
ation redundancy p = 1. The moving platform forms an equilateral triangle with
side lengths k. The mount points on the ground are located at the corners of a
rectangle with side lengths Ly and Ly. The reference displacements of actuators
1 and 4 for 6! = 6* = 0 is denoted with L; and L4. The parameter vector is T =
(Li,La,Ly,Ly,k). The nominal parameter values are my = (0,0,0.5,0.5,0.15) m.
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Numerical results are reported using
MRP of actuators 2 and 3 when joints
1 and 4 are locked. That is, only one set

of locked actuators is used, for which 0b e gt
the MRP of joint 2 is determined when &
controlled by actuator 3, and the MRP \\ //‘ — ;?)lii}ffﬁon
of joint 3 is determined when controlled R G
by actuator 2. The calibration perfor-
mance is examined for two sets of cali- /
. S . . B
bration points in Fig. 3. During calibra- P

tion actuators 6, 84 are positioned and Q/

locked so that actuator 2 of the model / 62 93\
with nominal parameters 7y exhibits a

MRP when point B of the platform co-  Fig, 3 Calibration points on a grid and on a cir-
incides with the calibration point (Fig. cle in workspace.

3). The first set consists of 4 x 4 samples on an equidistant grid. The second set com-
prises 20 points uniformly distributed on a circle. The plant parameters are randomly
setto = my+ (AL,—AL,—AL,—AL,+AL) with a deviation of AL = 103 m and
mp = (0,0,0.5,0.5,0.15) m. Simulating encoder precision the joint measurements in
the plant are quantized with encoder resolution Ax. Fig. 4a) shows the evolution of
calibration error for perfect measurement (no measurement errors), and for quanti-
zations Ax = 10~* and Ax = 103, when 16 calibration points on the grid in Fig.
2b) are used. Shown is the mean value of the absolute deviation of the model from
the plant parameters after step i. After 3 steps the calibration converges to the com-
putation accuracy if joint angles are measured perfectly. Otherwise the convergence
is bounded by the quantization Ax. For the chosen quantization convergence is ob-
served after one iteration. The final calibration error is below the uncertainty Ax,
which can be explained as an averaging effect. Similar results are found for the 20
calibration points on the circle in Fig. 4b).

Az=10"m Az=10"m

Mean Calibration Error & [m]
Mean Calibration Error & [m]
=
=

peifect

perfect
1014k measurement

measurement

i ) 3 1 5 i > 3 1 5
a) Iteration Step b) Iteration Step

Fig. 4 a) Calibration error evolution for different measurement accuracies Ax a) using 16 cali-

bration points on a grid in Fig. 3 b) 20 calibration points on the circle in Fig. 3 (AL = 1073).
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7 Conclusions and Outlook

A self-calibration method for RA-PKM has been proposed based on motion reversal
points. The method does not require any additional sensors. The only (but possibly
critical) condition on RA-PKM is that the drives for which MRP are detected must
be backdrivable. The general concept is introduced and numerical results are shown
for a simple 3 DOF planar RA-PKM. For this example the method shows very good
performance and accuracy. Future work will address the sensitivity and convergence
of algorithm in order to develop a calibration planning strategy.
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