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Abstract In this short article we will discuss methods of finding and clas-
sifying singularities of planar mechanisms. The key point is to observe that
the configuration spaces of the mechanisms can be understood as analytic
and algebraic varieties. The set of singular points of an algebraic variety is
itself an algebraic variety and of lower dimension than the original one. The
singular variety can be computed using the Jacobian criterion. Once the sin-
gular points are obtained their nature can be investigated by investigating
the localization of the constraint ideal at the local ring at this point. This
will tell us if the singularity is an intersection of several motion modes or a
singularity of a particular motion mode. The nature of the singularity can be
then analyzed further by computing the tangent cone at this point.

Key words: Kinematical singularities, Planar Mechanisms, Algebraic ge-
ometry, Local rings, Tangent cone.

1 Introduction

The equations of motion arising from Lagrangian mechanics for multi-
body systems are usually DAE equations where algebraic equations in our
case determine the holonomic constraints. The constraint equations in La-
grangian mechanics in holonomic case are generally of form g(u) = 0 and
u : I 7→ g−1(0) ⊂ Rk is the trajectory of the system which is the solution of
the particular DAE. The set g−1(0) is the analytic or algebraic variety defin-
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ing the kinematical properties of the system. In this article we will introduce
methods of algebraic geometry to study the configuration spaces as algebraic
varieties and investigate the nature of the possible singularities. The concept
of a tangent cone has previously been used for singularity analysis in [1]. More
classical methods to study singularities can be found from [2, 3, 4] and [5]
where also the concept of singularities is little bit wider. One of the earliest
works to use algebraic geometry in kinematical analysis was [6] and we have
used it previously for example in[7, 8, 9].

List of Abbreviations

A = K[x1, . . . , xk] denotes the ring of polynomials with coefficient field K.

I = ⟨g1, . . . , gn⟩ ⊂ A denotes the ideal generated by polynomials gi ∈ A.
√
I denotes the radical of the ideal I.

K(V(I)) = {[f ] | f ∈ A} is the coordinate ring defined by I.

V(I) ⊂ Kk is the algebraic variety defined by I.

Op is the localization of A at p. Also called a local ring at p.

OV,p ⊂ Op is the localization of V(I) at p.

Il(dg) is the ℓ:th Fitting ideal of matrix dg generated by its ℓ× ℓ minors.

Σ(V(I)) is the singular variety of V(I).

Cp(V(I)) is the tangent cone of V(I) at p.

2 Preliminary definitions

In our terminology the dimension of a constraint variety is simply the mo-
bility of the mechanism and the singular points are singular points of the
corresponding variety. Let us present shortly the relevant definition and the-
orems in order to compute our examples. Remember that the embedding
dimension of an algebraic variety is the minimal number of generators of Mp

and edim(OV,p) = dimK(Mp/M
2
p ). Particularly important is that the Krull

dimension of an ideal can be easily computed if the elements of Gröbner basis
of an ideal are known [10, 11].
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Definition 1 (Singular and regular points of a variety). Let I ⊂ A be
a radical ideal. The local ring OV,p is a regular local ring if

dimK(OV,p) = edim(OV,p) = dim(TpV(I)). (1)

If the point p is not regular it is singular.

The last equation in definition 3 with Krull’s principal ideal theorem [10]
gives us actual means to compute the singular points [11, 10].

Theorem 1 (Jacobian Criterion).
Let I = ⟨g1, . . . gn⟩ ⊂ K[x1, . . . , xk] be a radical ideal let K be closed extension

field of K and suppose that V(I) ⊂ Kk
is equidimensional and dim(V(I)) =

k − ℓ. Then the singular variety of V(I) is

Σ(V(I)) = V
(
I + Il(dg)

)
= V

(
I
)
∩ V

(
Il(dg)

)
⊂ Kk

. (2)

In other words if p ∈ S(V(I)) then OV,p is not a regular local ring. Moreover
if 1 ∈ I + Il(dg) then the variety V(I) is naturally smooth since V(1) = ∅.

Let us then introduce an other important object in our analysis the tan-
gent cone[12]. With Taylor’s formula we can expand any polynomial with
respect to any point p ∈ Kk and present f ∈ A by total degree d as a linear
combination

f = fp,0 + . . .+ fm,j

fp,d =
∑
|s|=d

as(x− p)s,

where s = (s1, . . . , sk) and s1 + . . . + sk = d. The polynomial fp,min is the
smallest part for which fp,j ̸= 0 in previous expansion.

Definition 2 (Tangent cone). Suppose that V(I) ⊂ Kk is an affine variety
and let p ∈ V(I). The Tangent cone of V(I) at pi, denoted by Cp(V(I)), is
the variety

Cp(V(I)) = V(fp,min | f ∈ I(V(I))), (3)

Note that if we make the coordinate transformation of p to origin C0(V(I)) is
the best approximation of V(I) at 0 with variety of an homogeneous ideal of
same dimension as V(I). The following theorem allows us also to distinguish
between singular and regular points[12].

Theorem 2. Assume that K is closed and p ∈ V. Then the following condi-
tions are equivalent

p ∈ V is regular point of V ⇔ dim(Cp(V)) = dim(TpV) ⇔ Cp(V) = TpV.
(4)

The next theorem allows us to recognize certain types of singularities[13].

Auth
or'

s v
ers

ion



4 Samuli Piipponen, Teijo Arponen and Jukka Tuomela

Theorem 3. Suppose that I ⊂ K[x1, . . . , xk] is an ideal where K is alge-
braically closed. Let p ∈ V(I) be a singular point of V(I) and Op be the local
ring at p. If the prime decomposition of the radical of OV,p in the local ring
is √

OV,p = I1 ∩ . . . ∩ Ir ⊂ Op (5)

then the corresponding irreducible varieties V(Ii) of prime ideals Ii represent
varieties passing through the singular point p and they intersect at this point.
However if the prime decomposition is

√
OV,p = OV,p, then OV,p is an integral

domain and the point p is a singularity of an irreducible variety V(I).

3 Examples

In this section we will apply previous theorems to two relatively easy exam-
ples. Let us look at planar N -bar slider crank mechanism and planar closed
one loop N -bar mechanism.

Fig. 1 On the left: Planar N -bar slider-crank mechanism. On the right: Planar closed
one-loop N -bar mechanism.

In general case it is perhaps shorter to treat the configuration spaces first
as analytic varieties when proving necessary conditions for singularities1.

Theorem 4. Suppose that we have either Planar N -bar slider-crank mecha-
nism or planar closed one loop N -bar mechanism so that the lengths of the
bars are l1, . . . , ln as in Fig.1. Then the necessary condition for existence of
kinematical singularities is

f(l1, . . . , ln) = l1 ± l2 ± . . .± ln = 0, li > 0 ∀ 1 ≤ i ≤ n. (6)

1 This could have been done by transforming the analytic variety to algebraic variety but
let us do that later.
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Proof. In the case of the N -bar slider-crank mechanism the constraint map
is g : Rn 7→ R

g(θ1, . . . , θn) = l1 sin(θ1) + l2 sin(θ2) + . . .+ ln sin(θn).

The Jacobian of g is then the gradient dg = ∇g = (l1 cos(θ1), . . . , ln cos(θn)).
Now if θ∗ = (θ1, . . . , θn) is singular point ⇔ rank(dg(θ∗)) = 0 and cos(θi) =
0 ∀ 1 ≤ i ≤ n which implies θi = π(1/2 + n), n ∈ Z. Substituting this to
constraint equation g(θ∗) = 0 implies directly

g(θ∗) = l1 ± l2 ± . . .± ln = 0.

In the case of N -bar planar single closed loop mechanism the constraint map
is ĝ := (g1, g2) : Rn 7→ R2{

g1(θ1, . . . , θn) = l1 cos(θ1) + . . .+ ln cos(θn)
g2(θ1, . . . , θn) = l1 sin(θ1) + . . .+ ln sin(θn).

Now the Jacobian of ĝ is the 2× n matrix

dĝ =

(
−l1 sin(θ1) . . . −ln sin(θn)
l1 cos(θ1) . . . ln cos(θn)

)
.

If θ∗ = (θ1, . . . , θn) is singular point ⇔ rank(dĝ(θ∗)) < 2 which is equivalent
to the fact that all the 2× 2 minors of dĝ have to vanish∣∣∣∣−lj sin(θj) −li sin(θi)

lj cos(θj) li cos(θi)

∣∣∣∣ = lilj sin(θj − θi) = 0 ∀ 1 ≤ i, j ≤ n, i ̸= j.

This is equivalent to θj = θi + nπ, n ∈ Z and like in Fig.1 without loss of
generality in kinematical analysis we can choose θ1 = 0 so that θj = nπ, n ∈
Z, ∀ 1 ≤ j ≤ n and substituting this we get automatically g2(θ

∗) = 0 and
the first equation reveals the condition

g1(θ
∗) = l1 ± l2 ± . . .± ln = 0.

4 Local analysis of examples

Let us then investigate the singularities locally first in slider-crank mechanism
when n = 2 and n = 3. The configuration space was the analytic variety
g−1(0). With substitutions ci = cos(θi), si = sin(θi) the general constraint
equations take form

p1 = l1s1 + . . .+ lnsn = 0, pi+1 = c2i + s2i − 1 = 0, 1 ≤ i ≤ n. (7)
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The configuration space is transformed to algebraic variety V(⟨p1, . . . , pn+1⟩)
and the constraint mapping to p : S1 × . . .× S1 ⊂ R2n 7→ Rn+1. In the case
n = 2 we set l1 = l2 = 1 and compute singular variety using theorem (1)

Σ(V(I)) = V(I + I3(dp)
)
= {(0, 1, 0,−1), (0,−1, 0, 1)} = q1 ∪ q2 ⊂ (S1)2.

Let us investigate q2 = (0,−1, 0, 1). After transformation to origin the con-
straint ideal defined by takes form

Î = ⟨q1, q2, q3⟩ = ⟨b1 + b2, a
2
1 + (b1 − 1)2 − 1, a22 + (b2 + 1)2 − 1⟩.

Now we can compute the tangent cone and get

C0(V(Î)) = V(⟨b1, b2, a21 − a22⟩).

Near origin the variety V(Î) looks like two lines s1 = t(1, 0, 1, 0), s2 =
t(1, 0,−1, 0), t ∈ R intersecting in the plane b1 = b2 = 0. Let us then
compute the prime decomposition of local ring OV,0. As expected we have
OV,0 = H1 ∩ H2. By theorem (3) two irreducible varieties/motion modes
pass through q2. In fact it is easy to find out that the configuration space
breaks to irreducible components/motion modes V(I) = V(I1) ∪ V(I2) and
S(V(I)) = V(I1) ∩V(I2).

Let us then do similar analysis for 3-bar slider crank mechanism. The
constraint variety defined by (9) is now V(I) = V(⟨p1, . . . , p4⟩). First we set
l1 = 2, l2 = l3 = 1 and compute the singular variety again by theorem (1)

Σ(V(I)) = V(I + I4(dp)) = {(0, 1, 0,−1, 0,−1), (0,−1, 0, 1, 0, 1)} = q1 ∪ q2.

Next we investigate q2 locally and after transformation to origin we have

Î = ⟨b1 + b2 + b3, a
2
1 + (b1 − 1)2 − 1, a22 + (b2 + 1)2 − 1, a23 + (b3 + 1)2 − 1⟩.

When we compute the tangent cone at origin we find

C0(V(Î)) = V(⟨b1, b2, b3, 2a21 − a22 − a23⟩).

so near the origin the variety appears to have a cone type singularity 2a21 −
a22 − a23 = 0 at the hyper plane b1 = b2 = b3 = 0. Next we compute the prime
decomposition of localization OV,0 of V(I) at O0 and get

√
OV,0 = OV,0 The

theorem (3) tells us that the singularity is not an intersection of different
motion modes/irreducible varieties which in this case agrees with the nature
of the nature of the tangent cone. When n = 2 the configuration space breaks
to two parts and when n = 3 such separation does not exist. The phenomena
is clearly visible from the plots of configuration spaces in Fig.2.
Let us then investigate planar closed one loop 4-bar mechanism. Let us fix
again first bar to x-axis and without loss of generality choose l1 = 1. With
substitutions ci = cos(θi), si = sin(θi) the constraint equations take form
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Fig. 2 On the left: Configuration space of 2-bar slider crank on (θ1, θ2)-space. In the

middle: Configuration space of 3-bar slider crank on (θ1, θ2, θ3)-space. On the right: The
nonlinear part 2a21 − a22 − a23 = 0 of the tangent cone C0(V(I)) in (a1, a2, a3)-space.

p1 = l2c2 . . .+ lnsn + 1 = 0

p2 = l2c2 + . . .+ lncn = 0, pi+1 = c2i+1 + s2i+1 − 1 = 0, 1 ≤ i ≤ n. (8)

The configuration space is transformed to algebraic variety V(⟨p1, . . . , pn+1⟩)
and the constraint mapping to p : S1 × . . . × S1 ⊂ R2n−2 7→ Rn+1. In the
case n = 4 we set l2 = l3 = l4 = 1 and compute again the singular variety

Σ(V(I)) = V(I + I5(dp)
)
= {q1, q2, q3} ⊂ (S1)3,

where {q1, q2, q3} = {(1, 0,−1, 0,−1, 0), (−1, 0, 1, 0,−1, 0), (−1, 0,−1, 0, 1, 0)}.
Now it is also straightforward to check that V(I) is union of three irreducible
varieties/motion modes V(I) = V(I1) ∪ V(I2) ∪ V(I3). Let us still do the
local analysis for V(I) for example at q1. Let us then move q1 to origin and
denote the transformed constraint ideal as Î. The tangent cone C0(V(Î)) is

C0(V(Î)) = V(⟨a2, a3, a4, b2 + b3 + b4, b3b4⟩)

The singularity looks now again as two lines s1 = b2(1, 0,−1), b2 ∈ R
and s2 = b2(1,−1, 0), b2 ∈ R intersecting at origin in the hyperplane
a2 = a3 = a4 = 0. The computation of prime decomposition of OV,0 confirms
our previous computation OV,0 = H1 ∩H2. Two irreducible varieties V(I1)
and V(I3) intersect at point q1 as the theorem (3) of suggests.

5 Conclusion

We applied computational algebraic geometry to three simple mechanism
examples to find out the possible kinematical singularities using Jacobian
criterion and further investigate their nature using concept of localization,
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local ring and tangent cone. Indeed we can conclude that the singularities in 2-
bar slider crank and 4-bar mechanism are removable singularities in the sense
that they are intersections of smooth assembly modes. However with 3-bar
slider crank this is not the case and we can call these essential singularities.
Although we investigated relatively simple examples the methods generalize
to more complicated mechanisms as we will show in the future. For actual
computations we have used a well established program Singular[14].
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